
SPEC-RL: ACCELERATING ON-POLICY REINFORCEMENT
LEARNING VIA SPECULATIVE ROLLOUTS

Bingshuai Liu1∗, Ante Wang1,3 ∗, Zijun Min1 ∗, Liang Yao2, Haibo Zhang2,
Yang Liu3, Anxiang Zeng2, Jinsong Su1†
1 School of Informatics, Xiamen University, 2 LLM Team, Shopee Pte. Ltd.,
3 Institute for AI Industry Research (AIR), Tsinghua University
{bsliu,wangante,minzijun}@stu.xmu.edu.cn, {leon.yao,peter.wu}@shopee.com,
liuyang2011@tsinghua.edu.cn, zeng0118@ntu.edu.sg, jssu@xmu.edu.cn

ABSTRACT

Large Language Models (LLMs) increasingly rely on reinforcement learning with verifiable rewards
(RLVR) to elicit reliable chain-of-thought reasoning. However, the training process remains bottle-
necked by the computationally expensive rollout stage. Existing acceleration methods—such as
parallelization, objective- and data-driven modifications, and replay buffers—either incur diminish-
ing returns, introduce bias, or overlook redundancy across iterations. We identify that rollouts from
consecutive training epochs frequently share a large portion of overlapping segments, wasting com-
putation. To address this, we propose SPEC-RL, a novel framework that integrates SPECulative
decoding with the RL rollout process. SPEC-RL reuses prior trajectory segments as speculative
prefixes and extends them via a draft-and-verify mechanism, avoiding redundant generation while
ensuring policy consistency. Experiments on diverse math reasoning and generalization bench-
marks, including GSM8K, MATH-500, OlympiadBench, MMLU-STEM, and others, demonstrate
that SPEC-RL reduces rollout time by 2–3× without compromising policy quality. As a purely
rollout-stage enhancement, SPEC-RL integrates seamlessly with mainstream algorithms (e.g., PPO,
GRPO, DAPO), offering a general and practical path to scale RLVR for large reasoning models. Our
code is available at: https://github.com/ShopeeLLM/Spec-RL.

GRPO PPO DAPO
60

62

64

66

68

70

A
cc

ur
ac

y

68.3 68.5

67.1 67.5
66.3 66.3

(a) Average Performance
GRPO PPO DAPO

0

2

4

6

R
ol

lo
ut

 T
im

e
(s

)

×104

2.51×
Speedup

1.94×
Speedup 2.88×

Speedup

(b) Training Rollout Time

Baseline with SPEC-RL

Figure 1: SPEC-RL achieves a 2–3× reduction in rollout time while maintaining average performance on Qwen-3-
8B-Base across different algorithms.

1 INTRODUCTION

Large Language Models (LLMs) have recently achieved substantial progress on challenging reasoning-intensive tasks,
such as mathematical problem-solving (Lewkowycz et al., 2022b), program synthesis (Chen et al., 2021; Li et al.,
2022), and multi-step agentic planning (Yao et al., 2023b;a). A key enabler of these advances is reinforcement learn-
ing with verifiable rewards (RLVR) (Lambert et al., 2024; Guo et al., 2025; Yue et al., 2025), which has emerged

∗Equal contribution. †Corresponding author: jssu@xmu.edu.cn.

1

https://github.com/ShopeeLLM/Spec-RL

as a widely adopted paradigm for incentivizing models to produce faithful and reliable chain-of-thought (CoT) rea-
soning (Wei et al., 2022). However, RLVR training pipelines remain constrained by the rollout stage, a fundamental
efficiency bottleneck, despite its demonstrated efficacy (Zheng et al., 2025). During this stage, the model must generate
large quantities of trajectories through interaction with the environment, a process that is computationally expensive
and scales poorly with model size. As a result, the cost and latency of trajectory generation dominate overall training
time, severely limiting the practicality of scaling RLVR to increasingly capable LLMs.

To mitigate rollout inefficiency, prior work has explored three directions. First, parallelized rollout generation increases
throughput by producing many trajectories per iteration (Xu et al., 2025), but its benefits fade as computational and
synchronization costs rise. Second, model-based accelerations reduce environment interaction through modified ob-
jectives (Brantley et al., 2025; Lin et al., 2025), data restructuring (Liu et al., 2025; Zhang et al., 2025b), or sample
selection heuristics (Yu et al., 2025; Zheng et al., 2025), though these approaches often introduce bias and added com-
plexity. Third, caching methods such as replay buffers reuse prior trajectories (Zhang et al., 2025a), thereby improving
data utilization, but still require fresh on-policy rollouts and struggle when policies shift significantly.

2 4 6 8 10 12 14 16
Epoch

0.50

0.55

0.60

0.65

0.70

O
ve

rla
p

R
at

io

GRPO
PPO
DAPO

Figure 2: Token overlap ratio per epoch under
GRPO, PPO, and DAPO. We compute the ratio
using ROUGE-1, comparing rollout response
tokens from each epoch against those from the
previous consecutive epoch.

In this paper, we identify a key opportunity through a preliminary
study that measures the token overlap ratio between consecutive
epochs, using ROUGE-1 (Lin, 2004), across different algorithms
(GRPO, PPO, and DAPO). We find that the overlap is already sub-
stantial from the second epoch (around 0.5) and gradually increases
as training progresses, stabilizing around 0.7 in later epochs (Fig-
ure 2). This indicates that a substantial portion of sampled trajec-
tories is repeatedly regenerated across training rounds, reflecting a
strong potential for reducing rollout cost. Such redundancy natu-
rally arises due to incremental policy updates, with the current policy
often behaving similarly to the previous one. Moreover, in environ-
ments with fixed initial states or tasks (e.g., repeated prompts in an
LLM reasoning task), the early parts of trajectories tend to overlap
across iterations. As a result, significant computation is wasted re-
generating these overlapping segments. This motivates the central
question of our work: can such redundancy be systematically ex-
ploited to accelerate rollouts?

We answer this question by proposing SPEC-RL, a novel frame-
work that integrates SPECulative decoding with the RL rollout pro-
cess. Rather than regenerating full trajectories from scratch, SPEC-
RL treats old rollouts from the previous epoch as implicit drafts:
following the speculative decoding paradigm, old rollout tokens are
verified under the current policy to form a verified prefix. When
the first rejection position is reached, the current policy continues
generation from that point onward, as illustrated in Figure 3. This
approach is directly analogous to draft-and-verify methods in text
generation, where a draft sequence is proposed and then validated in parallel by the target model (Leviathan et al.,
2023). By incorporating the same mechanism into RL rollouts, SPEC-RL leverages cached rollouts to skip redundant
computation while ensuring that the final outputs remain faithful to the current policy. The verified prefix is quickly
extended by the latest policy, ensuring that the final trajectory remains consistent with the current policy’s behavior.

Our experiments demonstrate that SPEC-RL substantially improves training efficiency across diverse tasks and model
scales. Concretely, SPEC-RL consistently reduces rollout generation time by 2–3× on average, while maintaining or
even improving final policy performance across a wide range of math reasoning benchmarks (GSM8K (Cobbe et al.,
2021), MATH-500 (Hendrycks et al., 2021), Minerva Math (Lewkowycz et al., 2022a), OlympiadBench (He et al.,
2024), AMC 2023 (Art of Problem Solving, 2024)) and out-of-distribution benchmarks (MMLU-STEM (Hendrycks
et al., 2020), IFEval (Zhou et al., 2023)). Importantly, SPEC-RL is designed as a modular enhancement to the data
collection phase, making it readily applicable to a wide range of mainstream RLVR algorithms, such as GRPO, DAPO,
and PPO.

In summary, our key contributions are as follows:

• Identification of Rollout Redundancy: We identify a common inefficiency in RLVR, where overlapping
trajectory segments are repeatedly generated, and show that exploiting this redundancy can accelerate the
rollout stage.

2

Policy Model (verify)

New Rollout

Policy Model (generate)

Verified Prefix

Verified PrefixPrompt Prompt
Old Rollout

= ≠

Policy Model

Prompt

Vanilla RLVR SPEC-RL

New Rollout

Cached Rollouts from Epoch𝒕 − 𝟏

裁剪框

Cached Rollouts from Epoch𝒕

Figure 3: Comparison of the rollout process in Vanilla RLVR and SPEC-RL. Vanilla RLVR regenerates full responses
at each epoch. In SPEC-RL, at each epoch t = 1, . . . , T , cached rollouts from the previous epoch are verified in
parallel to retain verified prefixes, the remaining tokens are discarded, and generation resumes from the rejection
position before assembling the final response.

• SPEC-RL Framework: To the best of our knowledge, SPEC-RL is the first framework to integrate specu-
lative decoding into RL rollouts, treating previous-epoch trajectories as implicit drafts and selecting verified
prefixes to reduce sampling overhead.

• Efficiency Gains: We demonstrate that SPEC-RL integrates seamlessly with mainstream RL algorithms and
significantly reduces rollout time while maintaining or improving policy performance.

2 PRELIMINARIES

2.1 ON-POLICY REINFORCEMENT LEARNING

Reinforcement learning with verifiable rewards (RLVR) formulates the answer generation of an LLM as a conditional
sampling policy. Given a dataset of reasoning pairs (x,y∗) ∼ D, where x is a prompt and y∗ is the ground-truth
answer, the policy πθ(· | x) generates a candidate response y. A reward function R(y,y∗) evaluates whether the
generated response y matches the ground-truth answer y∗. Training relies on on-policy rollouts, where samples are
drawn from the current policy at every iteration. This ensures that training data remain consistent with the current
policy distribution, avoiding the distribution mismatch issues common in off-policy methods and yielding more stable
learning. However, the downside is that new trajectories must be regenerated at each update, and the cost of producing
long sequences makes rollout the dominant efficiency bottleneck in RLVR. The objective of on-policy RL is simply to
maximize the expected reward of the generated responses:

J(θ) = E(x,y∗)∼D,y∼πθ(·|x)
[
R(y,y∗)

]
. (1)

In this work, we keep the RL objective and policy update unchanged and focus on improving the efficiency of the
rollout stage.

2.2 SPECULATIVE DECODING

Speculative decoding follows a draft–and–verify paradigm: an efficient draft model p (e.g., a smaller LM) first drafts
multiple future tokens, and the target model q verifies them in parallel. A drafted token zi ∼ p(· | x, z<i) is accepted
with

α(zi | x, z<i) = min
{
1,

q(zi | x, z<i)

p(zi | x, z<i)

}
, (2)

which guarantees that the resulting procedure samples exactly from the target distribution and thus preserves fidelity
to the target model q. It accelerates generation by reducing the number of expensive target computations. The actual
speedup is mainly determined by the acceptance rate and the cost gap between the draft and target model.

3

3 METHOD

The goal of SPEC-RL is to accelerate RL rollouts by avoiding redundant regeneration. Instead of sampling complete
trajectories from scratch at every step, we leverage cached rollouts from the previous epoch and reuse as much of
them as possible, only generating the minimal continuation that is inconsistent with the current policy (Figure 3).
This reduces the number of decoded tokens and directly cuts rollout latency. The detailed procedure is described in
Algorithm 1.

3.1 SPECULATIVE DECODING OVER CACHED ROLLOUTS WITH LENIENCE

At the core of SPEC-RL is adapting speculative decoding to the RL setting by treating cached rollouts as draft
sequences. For a prompt x, let yold = {yoldi } denote the cached rollout produced when this prompt was last seen in
training. Instead of generating from scratch, we verify each cached token under the current policy and decide whether
it can be reused. Formally, following the standard draft-and-verify formulation in Equation 2, we replace the draft
distribution p with the previous policy πold and the target distribution q with the current policy πt at epoch t, yielding
the acceptance rule

αi = min
(
1,

πt(y
old
i | x,yold

<i)

πold(yoldi | x,yold
<i)

)
. (3)

While the vanilla rule ensures exact consistency with the current policy, it can be overly strict in practice, limiting the
amount of reuse. To further improve reuse, we introduce a lenience parameter ℓ following prior work on speculative
decoding (Chen et al., 2024). Lenience relaxes the acceptance condition, effectively shifting the decision boundary
and permitting more tokens to be reused. Formally, the acceptance rule becomes

α̃i = min
(
1, ℓ ·

πt(y
old
i | x,yold

<i)

πold(yoldi | x,yold
<i)

)
. (4)

Each cached token is accepted if u ∼ U(0, 1) satisfies u ≤ α̃i, and rejected otherwise. When ℓ = 1, this reduces to
the vanilla speculative rule; ℓ > 1 increases acceptance and yields longer reused prefixes; ℓ → ∞ corresponds to full
reuse; and ℓ→ 0 recovers standard RLVR without reuse. This simple knob provides a flexible way to balance rollout
efficiency and exploration.

After applying the acceptance rule, the procedure identifies the first rejection position n. All tokens before this re-
jection position are retained as the verified prefix yold

<n, while the remaining suffix is discarded. The current policy
πt then resumes generation from this point onward, producing a new suffix ynew

≥n . Finally, the verified prefix and the
regenerated suffix are concatenated to form the new rollout ynew. This end-to-end process—verification, generation,
and assembly—is summarized in Algorithm 1.

3.2 IMPLEMENTING SPEC-RL IN RLVR TRAINING

To enable practical use in RLVR pipelines, SPEC-RL introduces a lightweight cache module that stores rollouts from
the previous epoch and continuously refreshes them as training proceeds. When the same prompt reappears, its cached

Algorithm 1: SPEC-RL

Input: Current policy πt; Prompt x; old response yold = {yoldi } with probability pold; lenience ℓ ≥ 1.
1 Compute probability in parallel pnewi ← πt(y

old
i | x,yold

<i), i = 1, ..., |yold|;
2 Compute acceptance probability α̃ = min(1, ℓ · p

new

pold);
3 Initialize rejection position n← |yold|+ 1;
4 for i = 1 to |yold| do
5 Sample u ∼ U(0, 1);
6 if u > α̃i then
7 Assign rejection position n← i;
8 break;

9 Generate response ynew
≥n ← πt(· | x,yold

<n);
10 Assemble response ynew ← {yold

<n,y
new
≥n };

11 return ynew

4

response is retrieved and verified under the current policy. Verified prefixes are reused directly, while rejected suffixes
are scheduled for continuation. This reuse–continue mechanism is implemented in Algorithm 1, which shows how
verified prefixes and regenerated suffixes are combined into the final response. For efficient batching, all requests are
packed into a single call to the rollout engine. Verified prefixes and prompts are aligned through left padding, so that
different requests can be processed in parallel without fragmentation. This design ensures that SPEC-RL operates as
a drop-in module: it modifies only the rollout stage, requires no change to reward computation or policy updates, and
is compatible with mainstream algorithms such as GRPO, PPO, and DAPO.

3.3 DISCUSSION

To further understand SPEC-RL, we discuss its connections and differences with both standard speculative decoding
and existing RLVR training. This comparison helps situate the method more clearly and highlight its key contributions.

Relation to speculative decoding. SPEC-RL follows the draft–and–verify paradigm of speculative decoding, but
in a simplified, single-round form. Vanilla speculative decoding typically requires a separate draft model, loading extra
parameters, scheduling overhead, and multiple verification rounds. In contrast, SPEC-RL reuses the previous policy
as the draft, with cached rollouts available “for free”. The current policy πt performs only one parallel verification
pass; after the first rejection, the suffix is generated directly. This eliminates the need for auxiliary models while
preserving the fidelity guarantees of speculative decoding.

Relation to vanilla RLVR. Compared to standard RLVR, SPEC-RL modifies only the rollout stage. In vanilla
training, every epoch regenerates full trajectories from scratch, even though large portions of tokens are already shared
between consecutive epochs, as shown in Figure 2. SPEC-RL exploits this redundancy by verifying cached rollouts,
reusing the accepted prefix, and regenerating only the suffix. Fully accepted responses can be reused without any
generation, directly reducing rollout cost while ensuring consistency with the current policy.

Why lenience matters. RLVR training proceeds through incremental updates, so adjacent policies remain closely
aligned. This makes lenience a natural fit: with moderate ℓ values, one can reuse tokens that are close to the current
policy distribution without deviating significantly. Moreover, since the draft model corresponds to the model from
the previous epoch, it remains naturally close to the current policy, thereby ensuring that cached rollouts are still
informative. Such relaxation preserves learning signals while substantially reducing rollout cost, as parallel verification
over cached rollouts is far cheaper than regenerating entire trajectories.

4 EXPERIMENTS

4.1 EXPERIMENT SETUP

We train our models using the verl (Sheng et al., 2025) framework with vLLM (Kwon et al., 2023) as the rollout engine,
on data sampled from DeepMath (6,144 examples, denoted as DeepMath-6K) (He et al., 2025) and SimpleRL(8,192
examples, denoted as SimpleRL-8K) (Zeng et al., 2025). All experiments use a prompt batch size of 1,024 and a
maximum response length of 4,096 tokens, conducted on a single node with 8× NVIDIA H100 GPUs. Rollout is
performed at a temperature of 1.0. The actor learning rate is fixed at 5× 10−7, and for PPO we set the critic learning
rate to 1× 10−5.

Benchmarks and metrics. We evaluate rollout efficiency and accuracy on a broad suite of benchmarks. Rollout
efficiency is reported as the number of generated tokens and the relative speedup (baseline time divided by method
time). Math reasoning benchmarks include AMC 2023 (Art of Problem Solving, 2024), GSM8K (Cobbe et al.,
2021), MATH-500 (Hendrycks et al., 2021), Minerva Math (Lewkowycz et al., 2022a), and OlympiadBench (He et al.,
2024). Out-of-distribution (OOD) benchmarks include MMLU-STEM (Hendrycks et al., 2020) and IFEval (Zhou
et al., 2023), which evaluate the generalization capability of the model. Full hyperparameter and evaluation details are
provided in Appendices A.1 and A.2.

4.2 MAIN PERFORMANCE

Overall performance on various models and algorithms. To verify the effectiveness of SPEC-RL, we evaluate
it across multiple model families (Qwen, LLaMA) and reinforcement learning algorithms (GRPO, PPO, DAPO),
with results summarized in Table 1. Across nine model–algorithm combinations, SPEC-RL achieves an average

5

speedup of 2.31×, with generated tokens reduced by 66%. The strongest case is Qwen-3-8B-Base with DAPO, where
rollout tokens drop from 1,052.2M to 326.2M (2.88×), while the average accuracy remains unchanged at 66.3. The
smallest gain is observed with Qwen-3-8B-Base under PPO, yet it still achieves a 1.94× speedup with stable accuracy.
Overall, the rollout time savings align directly with the reduction in generated tokens, confirming that token-level
savings are the main source of efficiency gains. On math reasoning benchmarks, most scores remain stable, with
larger models showing consistently robust performance, while smaller models exhibit minor fluctuations (e.g., AMC23
or MATH500). On OOD benchmarks, MMLU-STEM stays essentially unchanged, while IFEval improves notably,
most prominently on Qwen-3-8B-Base with GRPO, where the score rises from 41.2 to 47.7 (+6.5). These results
indicate that SPEC-RL achieves substantial rollout acceleration without sacrificing reasoning accuracy, and in several
cases even enhances out-of-distribution generalization. For completeness, the intermediate training results of each
experiment is provided in Appendix A.3. To further demonstrate end-to-end acceleration, we also report detailed
wall-clock breakdowns comparing vanilla algorithms and their SPEC-RL variants across all models and algorithms
in Appendix A.4. We further validate the generality of SPEC-RL by comparing GRPO and SPEC-RL on datasets
including DeepMath-6K and SimpleRL-8K, and by analyzing the impact of training set size on acceleration, with
detailed results reported in Appendix A.5 and Appendix A.6.

Table 1: Overall results across models (Qwen, LLaMA) and algorithms (GRPO, PPO, DAPO) on DeepMath-6K. For
each model size and family, we report the performance of its base model, the results of different RL algorithms, and
the corresponding rollout efficiency and accuracy when equipped with SPEC-RL.

Algorithm
Rollout Efficiency Math Reasoning OOD

AVG
Tokens (M) Speedup AMC23 GSM8K MATH

500
Minerva

Math
Olympiad

Bench
MMLU
STEM IFEval

Qwen-3-1.7B-Base
Base Model - - 22.5 59.1 45.0 12.5 16.7 39.3 17.9 30.4
GRPO 554.8 1.00× 42.5 82.6 64.4 26.5 25.5 60.7 24.4 46.7
↪→ + SPEC-RL 182.7 2.29× 37.5 84.4 68.0 29.4 29.3 58.3 28.8 48.0

PPO 565.1 1.00× 35.0 82.0 63.0 26.8 25.3 59.4 25.5 45.3
↪→ + SPEC-RL 230.8 1.94× 35.0 82.0 64.8 25.4 25.9 58.6 25.9 45.4

DAPO 543.1 1.00× 30.0 79.6 60.8 24.6 23.0 52.2 24.8 42.1
↪→ + SPEC-RL 171.6 2.17× 22.5 80.1 60.0 25.7 25.5 53.5 27.0 42.0

Qwen-3-8B-Base
Base Model - - 40.0 83.0 67.4 27.2 34.1 60.4 29.9 48.9
GRPO 1033.1 1.00× 75.0 94.1 86.4 43.8 53.0 84.6 41.2 68.3
↪→ + SPEC-RL 336.6 2.51× 70.0 94.5 87.8 44.1 51.0 84.5 47.7 68.5

PPO 984.0 1.00× 70.0 94.2 85.8 43.0 51.6 83.8 41.6 67.1
↪→ + SPEC-RL 400.1 1.94× 75.0 92.9 85.2 43.4 50.8 84.4 41.0 67.5

DAPO 1052.2 1.00× 75.0 93.3 84.8 40.1 48.6 82.4 39.6 66.3
↪→ + SPEC-RL 326.2 2.88× 65.0 93.8 84.4 43.8 50.4 82.2 44.4 66.3

LLaMA-3.2-1B-Instruct
Base Model - - 0.0 26.7 14.2 4.0 2.8 32.6 37.0 16.8
GRPO 553.9 1.00× 5.0 28.1 19.2 3.3 4.9 33.1 37.0 18.7
↪→ + SPEC-RL 162.5 2.60× 7.5 28.7 19.4 1.8 5.0 34.5 37.2 19.2

PPO 521.5 1.00× 10.0 31.6 20.8 4.0 6.4 34.3 42.7 21.4
↪→ + SPEC-RL 210.6 2.01× 10.0 32.4 20.2 5.5 5.0 35.3 40.7 21.3

DAPO 482.6 1.00× 7.5 29.6 19.2 4.0 5.5 33.0 38.6 19.6
↪→ + SPEC-RL 123.1 2.48× 10.0 34.9 20.2 4.0 5.5 35.5 38.4 21.2

Table 2: Comparison between SPEC-RL and a random reuse baseline on GRPO. In the random reuse setting, the
rejection position for each sequence is drawn uniformly at random, resulting in roughly half of the tokens being reused
on average.

Algorithm
Rollout Efficiency Math Reasoning OOD

AVG
Tokens (M) Speedup AMC23 GSM8K MATH

500
Minerva

Math
Olympiad

Bench
MMLU
STEM IFEval

GRPO 554.8 1.00× 42.5 82.6 64.4 26.5 25.5 60.7 24.4 46.7
↪→ + Random Reuse 304.5 2.35× 37.5 80.0 60.4 21.7 25.3 53.1 24.0 43.1
↪→ + SPEC-RL 182.7 2.29× 37.5 84.4 68.0 29.4 29.3 58.3 28.8 48.0

6

Table 3: Ablation on lenience parameter ℓ on the DeepMath-6K. Here ℓ = 1 corresponds to vanilla speculative
decoding, while ℓ =∞ corresponds to full reuse.

Algorithm
Rollout Efficiency Math Reasoning OOD

AVG
Tokens (M) Speedup AMC23 GSM8K MATH

500
Minerva

Math
Olympiad

Bench
MMLU
STEM IFEval

GRPO 554.8 1.00× 42.5 82.6 64.4 26.5 25.5 60.7 24.4 46.7
↪→ + SPEC-RL ℓ = 1 419.1 1.22× 40.0 81.8 63.8 28.7 26.5 59.6 25.9 46.6
↪→ + SPEC-RL ℓ = e0.2 246.7 1.86× 37.5 83.3 66.4 29.8 29.6 58.5 25.9 47.3
↪→ + SPEC-RL ℓ = e0.5 182.7 2.29× 37.5 84.4 68.0 29.4 29.3 58.3 28.8 48.0
↪→ + SPEC-RL ℓ = e0.8 144.8 2.64× 37.5 83.5 63.6 27.2 25.0 61.7 26.2 46.4
↪→ + SPEC-RL ℓ = e1.0 123.0 2.91× 37.5 83.9 62.4 25.7 24.9 54.8 28.3 45.4
↪→ + SPEC-RL ℓ = e2.0 114.4 3.05× 30.0 80.4 55.0 21.0 21.9 53.5 29.0 41.5
↪→ + SPEC-RL ℓ =∞ 40.0 14.86× 32.5 78.1 60.4 19.9 23.7 44.1 22.0 40.1

Comparison with random reuse strategy. We further compare SPEC-RL with a random reuse baseline, where
rejection positions are sampled uniformly at random, leading to roughly half of the tokens being reused on average.
As shown in Table 2, random reuse reduces rollout cost (304.5M vs. 554.8M tokens) and improves efficiency (2.35×
speedup), but causes a substantial drop in accuracy (43.1 vs. 46.7). In particular, it degrades performance on high-
stakes benchmarks such as MATH-500 (60.4 vs. 64.4) and Minerva Math (21.7 vs. 26.5). By contrast, SPEC-RL
achieves comparable or better efficiency gains (182.7M tokens, 2.29× speedup) while preserving accuracy. This
contrast highlights that naive reuse introduces harmful noise, whereas SPEC-RL leverages speculative verification
to retain policy fidelity while accelerating training. The detailed intermediate training results of random reuse are
reported in Appendix A.7

4.3 ABLATION STUDY

We conduct ablation experiments on Qwen-3-1.7B-Base with GRPO using the DeepMath-6K dataset with a batch size
of 1,024. Under this setting, one epoch corresponds to 6 steps, and the results are summarized in Table 3 and Figures 4,
5, and 6.

Impact of lenience ℓ. As shown in Table 3, increasing ℓ consistently improves rollout efficiency: starting from
vanilla speculative decoding at ℓ = 1 with a speedup of only 1.22×, the acceleration rises steadily and reaches 14.86×
when ℓ → ∞. Accuracy, however, does not follow the same trend—performance peaks at ℓ = e0.5 with 48.0, but
declines when reuse becomes overly aggressive, dropping to 40.1 at ℓ→∞. Overall, moderate lenience values strike

0 10 20 30 40 50 60 70 80 90
Step

0

50

100

150

200

250

300

350
(a) Rollout Time (s)

10 20 30 40 50 60 70 80 90
Step

0

200

400

600

800

(b) Average Verified Prefix Length

10 20 30 40 50 60 70 80 90
Step

0.0

0.2

0.4

0.6

0.8

1.0
(c) Full Reuse Ratio

vanilla
ℓ = 1

ℓ= e0.1
ℓ = e0.2

ℓ = e0.3
ℓ = e0.4

ℓ = e0.5
ℓ = e0.6

ℓ = e0.7
ℓ = e0.8

ℓ = e0.9
ℓ = e1.0

ℓ = e1.5
ℓ = e2.0

ℓ =∞

Figure 4: Training dynamics of SPEC-RL under different ℓ. (a) Rollout time per training step decreases as ℓ increases,
where the dashed line indicates the step at which speculative decoding begins. (b) Average verified prefix length grows
both with larger ℓ and across training steps, reflecting stronger policy alignment. (c) Full reuse ratio—the fraction of
samples fully reusing cached rollouts—also rises, complementing prefix length and jointly explaining the observed
efficiency gains.

7

0 10 20 30 40 50 60 70 80 90
Step

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

(a) Reward

0 10 20 30 40 50 60 70 80 90
Step

30

32

34

36

38

40

42

44

46
(b) Average Performance

vanilla
ℓ=1

ℓ= e0.1

ℓ= e0.2
ℓ= e0.3

ℓ= e0.4
ℓ= e0.5

ℓ= e0.6
ℓ= e0.7

ℓ= e0.8
ℓ= e0.9

ℓ= e1.0
ℓ= e1.5

ℓ= e2.0
ℓ=∞

Figure 5: Effect of lenience ℓ on learning outcomes. (a) Reward trajectories show that moderate ℓ maintains stability
and eventually surpasses vanilla GRPO, while overly large ℓ slows progress. (b) Average performance follows the
same trend: moderate ℓ preserves accuracy, whereas aggressive reuse (ℓ ≥ e1.0) degrades both reward and final
performance.

the best balance, yielding 2–3× rollout speedups while preserving or slightly improving accuracy, whereas extreme
reuse sacrifices performance despite dramatic acceleration. The detailed intermediate results throughout training are
provided in Appendix A.8.

Acceleration is jointly driven by lenience and policy alignment. In our setting, cached responses become reusable
from the second epoch (e.g., step 7), at which point rollout time shows the first sharp drop (Figure. 4 (a)). Before the
first epoch, since there is no old policy, SPEC-RL is not yet effective, and all rollout-time curves almost completely
overlap. Once the second epoch begins (the vertical dashed line in the figure), the curves with SPEC-RL diverge
rapidly, and rollout time is significantly reduced. Viewed from two dimensions, the results show clear patterns. Along
the lenience axis, vanilla GRPO stabilizes at roughly 300s per step, while even the default speculative decoding
(ℓ = 1) reduces this to just above 200s. As ℓ increases, rollout time decreases further: for example, at ℓ = e0.2, the
later rollout time is already less than half of the vanilla baseline (about 150s), and with larger ℓ the reduction is even
more pronounced (Figure. 4 (a)). At the same time, both the average accepted prefix length and the skip ratio rise as ℓ
increases (Figure. 4 (b,c)). Along the training-time axis, the average accepted prefix length is initially high, then drops
to a valley around steps 10–20 due to large early policy shifts, and subsequently rises again as the policy gradually
aligns (Figure. 4 (b)). Meanwhile, the skip ratio steadily increases throughout training (Figure. 4 (c)). These findings
indicate that reuse efficiency in SPEC-RL is governed both by the lenience parameter and by the policy alignment
that emerges over training, resulting in compounding efficiency gains.

Excessive reuse stresses optimization. When ℓ → ∞, reuse becomes complete and every cached response is fully
reused from the second epoch onward. As shown in Figure 6 (a–c), entropy, KL loss, and the gradient clipping ratio
all rise dramatically compared with vanilla GRPO and settings with ℓ ≤ e2.0, quickly shooting beyond the plotting
range, indicating severe instability. Because exploration collapses under complete reuse, the outputs of all subsequent
epochs become identical, and the training reward exhibits a clear cyclic fluctuation with the period of one epoch (6
steps in our setup), as illustrated in Figure 5 (a). These unstable dynamics further translate into a sharp degradation
of downstream accuracy: the average math performance drops markedly (Figure 5 (b) and Table 3). Overall, extreme
acceleration from complete reuse comes at the cost of exploration collapse and unstable optimization dynamics.

Moderate reuse preserves healthy learning signals. In contrast to the instability observed at extreme reuse, mod-
erate lenience values (around ℓ = e0.5) maintain well-behaved optimization dynamics. As shown in Figure 6 (a–c),
entropy and KL loss remain close to those of vanilla GRPO, and clipping is not abnormally triggered. Meanwhile,
reward trajectories under moderate ℓ maintain stability and eventually surpass the baseline (Figure 5 (a)), while av-
erage math performance is preserved or slightly improved (Figure 5 (b)), consistent with the peak average score of
48.0 reported in Table 3. These results demonstrate that moderate lenience values enable 2–3× acceleration without
sacrificing reward signals or downstream reasoning accuracy. Case studies in Appendix B further show how SPEC-

8

0 10 20 30 40 50 60 70 80 90
Step

0.0

0.2

0.4

0.6

0.8

1.0

1.2
(a) Entropy

0 10 20 30 40 50 60 70 80 90
Step

0.0

0.1

0.2

0.3

0.4

0.5
(b) KL Divergence

0 10 20 30 40 50 60 70 80 90
Step

0.001

0.002

0.003

0.004

0.005

0.006
(c) Policy Gradient Clip

vanilla
ℓ=1

ℓ= e0.1

ℓ= e0.2
ℓ= e0.3

ℓ= e0.4
ℓ= e0.5

ℓ= e0.6
ℓ= e0.7

ℓ= e0.8
ℓ= e0.9

ℓ= e1.0
ℓ= e1.5

ℓ= e2.0
ℓ=∞

Figure 6: Training dynamics of SPEC-RL under different ℓ. (a) Entropy decreases more rapidly with larger ℓ. (b) KL
Divergence gradually rises with more steps, especially under larger ℓ. (c) Policy Gradient Clip ratio first increases and
then stabilizes, with higher ℓ leading to larger values.

RL reuses verified prefixes while keeping the reasoning chain intact, illustrating why moderate reuse achieves the best
trade-off.

5 RELATED WORK

Efficiency in RLVR. Recent studies have explored several strategies to improve RLVR efficiency. One direction
parallelizes rollout generation to increase throughput (Xu et al., 2025), but its gains are constrained by computation and
synchronization overhead. Another line modifies optimization objectives or imposes additional constraints (Brantley
et al., 2025; Lin et al., 2025). Data-centric approaches restructure batches through grouping or sorting to raise the
proportion of informative samples (Liu et al., 2025; Zhang et al., 2025b). Heuristic and system-level designs further
reduce wasted rollouts and stabilize updates (Yu et al., 2025; Zheng et al., 2025). Replay-based methods cache past
trajectories for reuse (Zhang et al., 2025a), improving data efficiency but often failing when the current policy diverges,
leaving old trajectories partially obsolete. Overall, these methods operate mainly at the sequence level, either reducing
the number of trajectories or stabilizing optimization, but they do not lessen the number of tokens generated per
trajectory—the key driver of rollout latency. In contrast, our method improves efficiency at the token level by reusing
verified prefixes while leaving RLVR objectives and update rules unchanged.

Speculative decoding. Speculative decoding has become a widely studied technique for accelerating the generation
process. Leviathan et al. (2023) first proposed using a lightweight draft model to propose tokens, which are then
verified by a stronger target model. Subsequent works extended this principle in several directions. Medusa (Cai
et al., 2024) attaches multiple proposal heads to increase parallelism, while Cascade Speculative Drafting (Chen et al.,
2024) chains multiple draft–target stages for additional speedups. Other variants study accepting multiple tokens at
once (Qin et al., 2024) or verifying blocks of tokens instead of single steps (Sun et al., 2024). These methods, however,
are designed for inference and typically require extra draft models or added heads. In contrast, we adapt speculative
decoding to RLVR training by reusing outputs from the prior policy as drafts and verifying them under the current
policy, enabling prefix reuse during rollout without additional models and remaining compatible with high-throughput
rollout engines.

6 CONCLUSION

We address the rollout bottleneck in reinforcement learning with verifiable rewards (RLVR) by introducing SPEC-RL,
which integrates speculative decoding into the rollout stage. Rather than regenerating trajectories from scratch, SPEC-
RL treats previous-epoch rollouts as implicit drafts: tokens are verified under the current policy to form a verified
prefix, then generation resumes from the first rejection position. A lenience parameter ℓ modulates the acceptance
rule, trading off reuse and exploration.

9

Extensive experiments across Qwen and LLaMA model families and three major RL algorithms (GRPO, PPO, and
DAPO) show that SPEC-RL consistently reduces rollout time by 2–3×, cutting millions of generated tokens while
maintaining, and in some cases improving, math reasoning accuracy and OOD generalization. These results estab-
lish SPEC-RL as a practical, model- and algorithm-agnostic technique for accelerating RLVR, and demonstrate that
rollout redundancy can be systematically exploited without altering the RL objective, reward function, or update rule.

Limitations include reliance on cached responses and reduced exploration under aggressive lenience, which can de-
grade accuracy. Future directions include developing adaptive schedules of ℓ that adjust reuse strength during training,
as well as extending speculative decoding to richer RLVR settings such as multi-turn interaction, larger-scale training,
and integration with advanced data curricula. Overall, SPEC-RL provides a simple yet general path toward faster,
lower-cost RLVR training for large reasoning models, making the paradigm more practical to scale.

REFERENCES

Art of Problem Solving. Amc problems and solutions. https://artofproblemsolving.com/wiki/
index.php?title=AMC_Problems_and_Solutions, 2024. Accessed: 2025-04-20.

Kianté Brantley, Mingyu Chen, Zhaolin Gao, Jason D. Lee, Wen Sun, Wenhao Zhan, and Xuezhou Zhang. Acceler-
ating rl for llm reasoning with optimal advantage regression, 2025. URL https://arxiv.org/abs/2505.
20686.

Tianle Cai, Yuhong Li, Zhengyang Geng, Hongwu Peng, Jason D. Lee, Deming Chen, and Tri Dao. Medusa: Simple
llm inference acceleration framework with multiple decoding heads, 2024. URL https://arxiv.org/abs/
2401.10774.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared Kaplan, Harri Ed-
wards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large language models trained on code.
arXiv preprint arXiv:2107.03374, 2021.

Ziyi Chen, Xiaocong Yang, Jiacheng Lin, Chenkai Sun, Kevin Chang, and Jie Huang. Cascade speculative drafting
for even faster llm inference. Advances in Neural Information Processing Systems, 37:86226–86242, 2024.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias Plappert,
Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to solve math word problems. arXiv preprint
arXiv:2110.14168, 2021.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong Ma, Peiyi
Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning. arXiv
preprint arXiv:2501.12948, 2025.

Nathan Habib, Clémentine Fourrier, Hynek Kydlı́ček, Thomas Wolf, and Lewis Tunstall. Lighteval: A lightweight
framework for llm evaluation, 2023. URL https://github.com/huggingface/lighteval.

Chaoqun He, Renjie Luo, Yuzhuo Bai, Shengding Hu, Zhen Leng Thai, Junhao Shen, Jinyi Hu, Xu Han, Yujie Huang,
Yuxiang Zhang, et al. Olympiadbench: A challenging benchmark for promoting agi with olympiad-level bilingual
multimodal scientific problems. arXiv preprint arXiv:2402.14008, 2024.

Zhiwei He, Tian Liang, Jiahao Xu, Qiuzhi Liu, Xingyu Chen, Yue Wang, Linfeng Song, Dian Yu, Zhenwen Liang,
Wenxuan Wang, et al. Deepmath-103k: A large-scale, challenging, decontaminated, and verifiable mathematical
dataset for advancing reasoning. arXiv preprint arXiv:2504.11456, 2025.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob Steinhardt. Mea-
suring massive multitask language understanding. arXiv preprint arXiv:2009.03300, 2020.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song, and Jacob Stein-
hardt. Measuring mathematical problem solving with the math dataset. arXiv preprint arXiv:2103.03874, 2021.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph Gonzalez, Hao
Zhang, and Ion Stoica. Efficient memory management for large language model serving with pagedattention. In
Proceedings of the 29th symposium on operating systems principles, pp. 611–626, 2023.

Nathan Lambert, Jacob Morrison, Valentina Pyatkin, Shengyi Huang, Hamish Ivison, Faeze Brahman, Lester James V
Miranda, Alisa Liu, Nouha Dziri, Shane Lyu, et al. Tulu 3: Pushing frontiers in open language model post-training.
arXiv preprint arXiv:2411.15124, 2024.

10

https://artofproblemsolving.com/wiki/index.php?title=AMC_Problems_and_Solutions
https://artofproblemsolving.com/wiki/index.php?title=AMC_Problems_and_Solutions
https://arxiv.org/abs/2505.20686
https://arxiv.org/abs/2505.20686
https://arxiv.org/abs/2401.10774
https://arxiv.org/abs/2401.10774
https://github.com/huggingface/lighteval

Yaniv Leviathan, Matan Kalman, and Yossi Matias. Fast inference from transformers via speculative decoding. In
Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett (eds.),
Proceedings of the 40th International Conference on Machine Learning, volume 202 of Proceedings of Machine
Learning Research, pp. 19274–19286. PMLR, 23–29 Jul 2023. URL https://proceedings.mlr.press/
v202/leviathan23a.html.

Aitor Lewkowycz, Anders Andreassen, David Dohan, Ethan Dyer, Henryk Michalewski, Vinay Ramasesh, Ambrose
Slone, Cem Anil, Imanol Schlag, Theo Gutman-Solo, et al. Solving quantitative reasoning problems with language
models. Advances in Neural Information Processing Systems, 35:3843–3857, 2022a.

Aitor Lewkowycz, Anders Andreassen, David Dohan, Ethan Dyer, Henryk Michalewski, Vinay Ramasesh, Ambrose
Slone, Cem Anil, Imanol Schlag, Theo Gutman-Solo, et al. Solving quantitative reasoning problems with language
models. Advances in neural information processing systems, 35:3843–3857, 2022b.

Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, Rémi Leblond, Tom Eccles, James
Keeling, Felix Gimeno, Agustin Dal Lago, et al. Competition-level code generation with alphacode. Science, 378
(6624):1092–1097, 2022.

Chin-Yew Lin. Rouge: A package for automatic evaluation of summaries. In Text summarization branches out, pp.
74–81, 2004.

Zhihang Lin, Mingbao Lin, Yuan Xie, and Rongrong Ji. Cppo: Accelerating the training of group relative policy
optimization-based reasoning models, 2025. URL https://arxiv.org/abs/2503.22342.

Zikang Liu, Tongtian Yue, Yepeng Tang, Longteng Guo, Junxian Cai, Qingbin Liu, Xi Chen, and Jing Liu. Prefix
grouper: Efficient grpo training through shared-prefix forward, 2025. URL https://arxiv.org/abs/2506.
05433.

Zongyue Qin, Ziniu Hu, Zifan He, Neha Prakriya, Jason Cong, and Yizhou Sun. Optimized multi-token joint decoding
with auxiliary model for llm inference. arXiv preprint arXiv:2407.09722, 2024.

Guangming Sheng, Chi Zhang, Zilingfeng Ye, Xibin Wu, Wang Zhang, Ru Zhang, Yanghua Peng, Haibin Lin, and
Chuan Wu. Hybridflow: A flexible and efficient rlhf framework. In Proceedings of the Twentieth European Confer-
ence on Computer Systems, pp. 1279–1297, 2025.

Ziteng Sun, Uri Mendlovic, Yaniv Leviathan, Asaf Aharoni, Jae Hun Ro, Ahmad Beirami, and Ananda Theertha
Suresh. Block verification accelerates speculative decoding. arXiv preprint arXiv:2403.10444, 2024.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou, et al.
Chain-of-thought prompting elicits reasoning in large language models. Advances in neural information processing
systems, 35:24824–24837, 2022.

Yixuan Even Xu, Yash Savani, Fei Fang, and Zico Kolter. Not all rollouts are useful: Down-sampling rollouts in llm
reinforcement learning. arXiv preprint arXiv:2504.13818, 2025.

An Yang, Beichen Zhang, Binyuan Hui, Bofei Gao, Bowen Yu, Chengpeng Li, Dayiheng Liu, Jianhong Tu, Jin-
gren Zhou, Junyang Lin, et al. Qwen2. 5-math technical report: Toward mathematical expert model via self-
improvement. arXiv preprint arXiv:2409.12122, 2024.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik Narasimhan. Tree of
thoughts: Deliberate problem solving with large language models. Advances in neural information processing
systems, 36:11809–11822, 2023a.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao. React: Synergizing
reasoning and acting in language models. In International Conference on Learning Representations (ICLR), 2023b.

Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Weinan Dai, Tiantian Fan, Gaohong
Liu, Lingjun Liu, Xin Liu, Haibin Lin, Zhiqi Lin, Bole Ma, Guangming Sheng, Yuxuan Tong, Chi Zhang, Mofan
Zhang, Wang Zhang, Hang Zhu, Jinhua Zhu, Jiaze Chen, Jiangjie Chen, Chengyi Wang, Hongli Yu, Yuxuan Song,
Xiangpeng Wei, Hao Zhou, Jingjing Liu, Wei-Ying Ma, Ya-Qin Zhang, Lin Yan, Mu Qiao, Yonghui Wu, and
Mingxuan Wang. Dapo: An open-source llm reinforcement learning system at scale, 2025. URL https://
arxiv.org/abs/2503.14476.

11

https://proceedings.mlr.press/v202/leviathan23a.html
https://proceedings.mlr.press/v202/leviathan23a.html
https://arxiv.org/abs/2503.22342
https://arxiv.org/abs/2506.05433
https://arxiv.org/abs/2506.05433
https://arxiv.org/abs/2503.14476
https://arxiv.org/abs/2503.14476

Yang Yue, Zhiqi Chen, Rui Lu, Andrew Zhao, Zhaokai Wang, Shiji Song, and Gao Huang. Does reinforcement
learning really incentivize reasoning capacity in llms beyond the base model? arXiv preprint arXiv:2504.13837,
2025.

Weihao Zeng, Yuzhen Huang, Qian Liu, Wei Liu, Keqing He, Zejun Ma, and Junxian He. Simplerl-zoo: Investigating
and taming zero reinforcement learning for open base models in the wild. arXiv preprint arXiv:2503.18892, 2025.

Hongzhi Zhang, Jia Fu, Jingyuan Zhang, Kai Fu, Qi Wang, Fuzheng Zhang, and Guorui Zhou. Rlep: Reinforcement
learning with experience replay for llm reasoning. arXiv preprint arXiv:2507.07451, 2025a.

Yiqi Zhang, Huiqiang Jiang, Xufang Luo, Zhihe Yang, Chengruidong Zhang, Yifei Shen, Dongsheng Li, Yuqing Yang,
Lili Qiu, and Yang You. SortedRL: Accelerating RL training for LLMs through online length-aware scheduling. In
ES-FoMo III: 3rd Workshop on Efficient Systems for Foundation Models, 2025b. URL https://openreview.
net/forum?id=YoV9lIZ827.

Haizhong Zheng, Yang Zhou, Brian R. Bartoldson, Bhavya Kailkhura, Fan Lai, Jiawei Zhao, and Beidi Chen. Act
only when it pays: Efficient reinforcement learning for llm reasoning via selective rollouts, 2025. URL https:
//arxiv.org/abs/2506.02177.

Jeffrey Zhou, Tianjian Lu, Swaroop Mishra, Siddhartha Brahma, Sujoy Basu, Yi Luan, Denny Zhou, and Le Hou.
Instruction-following evaluation for large language models. arXiv preprint arXiv:2311.07911, 2023.

12

https://openreview.net/forum?id=YoV9lIZ827
https://openreview.net/forum?id=YoV9lIZ827
https://arxiv.org/abs/2506.02177
https://arxiv.org/abs/2506.02177

A MORE DETAILS OF SPEC-RL

This appendix provides additional details on experimental settings, hyperparameters, and reward design, as well as
extended ablation studies and full step-level results. We begin with shared training configurations and evaluation
setups, then report intermediate training trajectories, efficiency analyses, and end-to-end time breakdowns. Finally,
we present ablations across datasets (DeepMath-6K vs. SimpleRL-8K) and training-set sizes (2K–6K), additional
baseline comparisons, and case studies that illustrate the behavior of SPEC-RL in practice.

A.1 HYPERPARAMETERS

We report the shared training settings (model families, rollout engine, batch size, sequence lengths, training steps, and
optimizer details), as well as the algorithm-specific configurations. All experiments use Qwen-3-1.7B-Base, Qwen-
3-8B-Base, and LLaMA-3.2-1B as backbone models. Rollouts are generated using vLLM (rollout N = 8) with a
global batch size of 1024. The maximum prompt length is 1,024 tokens, and the maximum response length is 4,096
tokens. For optimization, the actor is trained using AdamW (learning rate 5× 10−7, weight decay 0.01, and gradient
clipping of 1.0). For PPO, the critic is additionally optimized with AdamW (learning rate 1×10−5, weight decay 0.01,
clipping 1.0). Algorithm-specific differences are as follows. GRPO enables KL regularization with a coefficient of
0.0001, whereas PPO and DAPO disable KL regularization. DAPO further adopts a wider clipping range (high = 0.28,
c = 10) compared to GRPO and PPO (high = 0.2, c = 3). Additionally, DAPO utilizes dynamic sampling. To ensure
fair comparison with GRPO and PPO, we control for the total amount of rollout data: each training step in DAPO
corresponds to multiple generation steps, and the evaluation interval is reduced from every 10 steps to every 5 steps.
SPEC-RL uses default lenience values of e0.5 for GRPO, e0.3 for PPO, and e0.15 for DAPO, chosen via grid search
to balance rollout efficiency and stability. All methods employ the math-verify reward, which assigns +1 if the
final boxed or numeric answer matches the ground truth and 0 otherwise. This simple, deterministic design ensures
that the reward is aligned with evaluation metrics across benchmarks.

We use a rule-based reward function that depends solely on the correctness of the final answer. Specifically, we utilize
the math-verify library to verify each generated solution: if the predicted answer matches the reference, the model
receives a reward of +1, and otherwise, 0. The math-verify library is responsible for parsing the model output,
extracting the final boxed or numeric answer, and checking it against the ground truth. No format-based shaping
or auxiliary heuristics are used. This choice maintains a simple, deterministic, and aligned reward signal across all
benchmarks, aligning with the evaluation objective.

A.2 DETAILED EVALUATION SETUPS

Our evaluation setup largely follows prior work (Zeng et al., 2025; Yang et al., 2024), ensuring consistency and
comparability with established baselines. For all math reasoning benchmarks, including AMC23, GSM8K, MATH-
500, Minerva Math, OlympiadBench, and MMLU-STEM, we use a maximum generation length of 16,000 tokens,
with nucleus sampling (p = 0.95) and temperature set to 1.0. For IFEval, we employ the lighteval (Habib et al., 2023)
framework for evaluation, maintaining the same decoding parameters as those used in the math reasoning benchmarks.
This uniform setup ensures that all comparisons focus on the effects of SPEC-RL, rather than variations in decoding
configurations. For experiments on DeepMath-6K, we report the performance at step 90 (corresponding to 15 epochs
with 6,144 examples and a batch size of 1,024). For SimpleRL-8K, we report the performance at step 100.

A.3 PERFORMANCE OVER TRAINING STEPS

To provide a more complete view of model behavior and enhance the robustness of our method, we also report per-
formance trajectories throughout training. For each setting, results are shown every 10 steps, comparing the vanilla
algorithm with its SPEC-RL variant, as shown in Tables 4, 5, 6, 7, 8, 9, 10, 11, 12. This step-wise view complements
the main results by illustrating how rollout efficiency and accuracy evolve consistently during training, rather than
only at the final checkpoint.

Training Dynamics and Efficiency Across Different RL Algorithms. We present the efficiency of our method
across RL algorithms in Figures 7, 8, and compare rewards and rollout time against baselines in Figures 9, 10. Across
all three algorithms, SPEC-RL substantially reduces rollout time while preserving learning quality: rewards match or
exceed the vanilla baselines under PPO and GRPO, and are largely on par under DAPO (with a minor late-stage gap
on Qwen3-8B). The efficiency gains align with stronger speculative reuse signals: the full reuse ratio quickly rises
and stabilizes around 0.6–0.85 after early transients, and the average verified prefix length remains large (hundreds
to 1.2k tokens) and generally increases over training—most prominently on Qwen3-8B for GRPO/DAPO. Together,

13

Table 4: Intermediate training results of Qwen-3-1.7B-Base on DeepMath-6K with GRPO and SPEC-RL. We report
rollout efficiency and accuracy every 10 training steps, with GRPO and its SPEC-RL variant interleaved.

Algorithm Step
Rollout Efficiency Math Reasoning OOD

AVG
Tokens (M) Speedup AMC23 GSM8K MATH

500
Minerva

Math
Olympiad

Bench
MMLU
STEM IFEval

Base Model 0 - - 22.5 59.1 45.0 12.5 16.7 39.3 17.9 30.4
GRPO 10 65.8 1.00× 37.5 74.0 54.0 18.8 22.8 43.9 20.3 38.8
↪→ + SPEC-RL 10 43.6 1.41× 27.5 75.7 55.8 21.7 21.8 43.0 22.4 38.3

GRPO 20 127.4 1.00× 27.5 78.2 57.8 25.4 24.7 45.5 20.3 39.9
↪→ + SPEC-RL 20 67.2 1.66× 30.0 80.0 63.0 25.0 24.6 46.9 22.2 41.7

GRPO 30 187.7 1.00× 37.5 80.1 60.4 22.4 25.0 47.9 20.9 42.0
↪→ + SPEC-RL 30 85.1 1.85× 30.0 81.0 64.0 25.4 27.6 51.1 26.2 43.6

GRPO 40 248.3 1.00× 32.5 79.9 65.0 23.5 24.7 50.7 21.3 42.5
↪→ + SPEC-RL 40 102.9 1.96× 37.5 80.7 63.8 26.5 26.1 52.2 23.5 44.3

GRPO 50 309.1 1.00× 35.0 81.2 64.2 25.7 24.6 53.7 25.1 44.2
↪→ + SPEC-RL 50 119.4 2.06× 32.5 81.1 64.4 28.7 28.0 55.6 27.7 45.4

GRPO 60 370.4 1.00× 35.0 81.3 63.6 28.3 26.7 56.0 24.0 45.0
↪→ + SPEC-RL 60 135.1 2.14× 27.5 83.4 66.4 26.5 29.9 54.7 28.8 45.3

GRPO 70 431.9 1.00× 42.5 82.3 61.8 26.5 28.1 55.5 26.2 46.1
↪→ + SPEC-RL 70 153.2 2.18× 40.0 82.5 65.4 26.5 29.9 55.6 27.4 46.8

GRPO 80 493.5 1.00× 25.0 82.0 64.4 24.3 26.4 59.4 25.0 43.8
↪→ + SPEC-RL 80 168.1 2.24× 45.0 83.7 67.0 29.8 29.6 57.1 28.3 48.6

GRPO 90 554.8 1.00× 42.5 82.6 64.4 26.5 25.5 60.7 24.4 46.7
↪→ + SPEC-RL 90 182.7 2.29× 37.5 84.4 68.0 29.4 29.3 58.3 28.8 48.0

Table 5: Intermediate training results of Qwen-3-8B-Base on DeepMath-6K with GRPO and SPEC-RL. We report
rollout efficiency and accuracy every 10 training steps, with GRPO and its SPEC-RL variant interleaved.

Algorithm Step
Rollout Efficiency Math Reasoning OOD

AVG
Tokens (M) Speedup AMC23 GSM8K MATH

500
Minerva

Math
Olympiad

Bench
MMLU
STEM IFEval

Base Model 0 - - 40.0 83.0 67.4 27.2 34.1 60.4 29.9 48.9
GRPO 10 71.9 1.00× 60.0 91.5 80.0 32.7 44.3 64.7 34.4 58.2
↪→ + SPEC-RL 10 53.0 1.36× 60.0 92.0 80.0 37.1 43.9 64.2 37.2 59.2

GRPO 20 158.2 1.00× 62.5 93.6 82.8 40.4 49.3 77.3 39.0 63.6
↪→ + SPEC-RL 20 76.4 1.96× 65.0 93.3 83.6 42.6 48.6 72.2 43.4 64.1

GRPO 30 278.1 1.00× 70.0 92.7 84.2 39.7 48.9 80.4 35.7 64.5
↪→ + SPEC-RL 30 116.7 2.18× 65.0 93.5 85.0 43.0 49.5 80.4 47.9 66.3

GRPO 40 404.2 1.00× 67.5 93.5 85.2 40.8 50.2 82.0 37.9 65.3
↪→ + SPEC-RL 40 156.4 2.31× 75.0 94.1 84.2 44.5 49.0 83.3 46.8 68.1

GRPO 50 532.0 1.00× 70.0 93.5 85.4 42.6 49.5 82.8 40.1 66.3
↪→ + SPEC-RL 50 194.4 2.36× 77.5 93.3 84.8 44.1 52.3 83.2 45.7 68.7

GRPO 60 659.3 1.00× 72.5 93.1 84.8 44.1 51.4 83.0 38.8 66.8
↪→ + SPEC-RL 60 235.7 2.36× 72.5 94.4 85.4 43.0 51.1 84.4 44.9 68.0

GRPO 70 785.6 1.00× 65.0 93.3 84.8 43.4 51.3 84.3 34.8 65.3
↪→ + SPEC-RL 70 279.2 2.36× 62.5 94.4 87.0 43.8 51.7 84.7 47.5 67.4

GRPO 80 910.2 1.00× 67.5 94.0 85.8 43.4 50.2 84.7 40.1 66.5
↪→ + SPEC-RL 80 311.1 2.42× 75.0 93.4 87.4 43.4 52.1 85.2 48.2 69.2

GRPO 90 1033.1 1.00× 75.0 94.1 86.4 43.8 53.0 84.6 41.2 68.3
↪→ + SPEC-RL 90 336.6 2.51× 70.0 94.5 87.8 44.1 51.0 84.5 47.7 68.5

these curves indicate that SPEC-RL learns to reuse long, verified prefixes, trading decoding for reuse, which yields
lower per-step generation cost without compromising reward progress.

14

Table 6: Intermediate training results of LLaMA-3.2-1B-Instruct on DeepMath-6K with GRPO and SPEC-RL. We
report rollout efficiency and accuracy every 10 training steps, with GRPO and its SPEC-RL variant interleaved.

Algorithm Step
Rollout Efficiency Math Reasoning OOD

AVG
Tokens (M) Speedup AMC23 GSM8K MATH

500
Minerva

Math
Olympiad

Bench
MMLU
STEM IFEval

Base Model 0 - - 0.0 26.7 14.2 4.0 2.8 32.6 37.0 16.8
GRPO 10 72.1 1.00× 7.5 27.2 14.2 2.9 3.4 31.7 38.8 18.0
↪→ + SPEC-RL 10 47.8 1.38× 5.0 27.1 12.8 2.6 3.4 32.8 38.6 17.5

GRPO 20 141.2 1.00× 5.0 28.3 15.6 2.6 3.9 33.5 39.7 18.4
↪→ + SPEC-RL 20 78.5 1.57× 7.5 28.7 18.0 3.7 3.9 35.0 38.6 19.3

GRPO 30 204.5 1.00× 5.0 27.1 17.4 2.9 4.4 35.1 38.3 18.6
↪→ + SPEC-RL 30 100.7 1.73× 5.0 32.3 18.4 2.6 4.9 33.4 40.5 19.6

GRPO 40 266.8 1.00× 10.0 29.5 15.4 3.3 4.4 33.2 41.2 19.6
↪→ + SPEC-RL 40 115.0 1.94× 10.0 31.2 18.6 4.4 5.5 34.2 38.8 20.4

GRPO 50 326.2 1.00× 12.5 27.9 17.6 3.7 5.3 34.3 38.1 19.9
↪→ + SPEC-RL 50 126.3 2.12× 7.5 31.5 20.2 4.4 4.7 36.0 39.6 20.6

GRPO 60 382.9 1.00× 15.0 28.4 17.8 3.3 5.2 34.0 40.5 20.6
↪→ + SPEC-RL 60 134.7 2.29× 7.5 31.8 19.0 4.4 5.5 35.6 37.9 20.2

GRPO 70 438.3 1.00× 15.0 30.1 17.6 4.8 5.5 34.6 37.3 20.7
↪→ + SPEC-RL 70 143.6 2.41× 12.5 29.7 19.8 5.1 5.8 36.1 37.2 20.9

GRPO 80 495.3 1.00× 5.0 25.9 17.6 4.0 3.9 33.3 37.2 18.1
↪→ + SPEC-RL 80 152.8 2.52× 7.5 29.3 19.4 2.9 3.9 35.6 42.7 20.2

GRPO 90 553.9 1.00× 5.0 28.1 19.2 3.3 4.9 33.1 37.0 18.7
↪→ + SPEC-RL 90 162.5 2.60× 7.5 28.7 19.4 1.8 5.0 34.5 37.2 19.2

Table 7: Intermediate training results of Qwen-3-1.7B-Base on DeepMath-6K with PPO and SPEC-RL. We report
rollout efficiency and accuracy every 10 training steps, with PPO and its SPEC-RL variant interleaved.

Algorithm Step
Rollout Efficiency Math Reasoning OOD

AVG
Tokens (M) Speedup AMC23 GSM8K MATH

500
Minerva

Math
Olympiad

Bench
MMLU
STEM IFEval

Base Model 0 - - 22.5 59.1 45.0 12.5 16.7 39.3 17.9 30.4
PPO 10 66.6 1.00× 35.0 71.3 54.8 19.9 21.3 42.6 19.2 37.7
↪→ + SPEC-RL 10 46.5 1.34× 27.5 73.2 56.8 17.6 23.3 42.9 19.4 37.2

PPO 20 129.2 1.00× 35.0 77.3 60.4 22.8 25.0 46.6 21.8 41.3
↪→ + SPEC-RL 20 80.0 1.44× 37.5 78.8 58.0 23.2 23.4 46.9 20.9 41.2

PPO 30 191.5 1.00× 37.5 78.5 59.4 22.8 26.5 47.8 19.6 41.7
↪→ + SPEC-RL 30 106.2 1.56× 37.5 78.3 62.6 23.5 25.6 49.8 22.7 42.9

PPO 40 253.6 1.00× 40.0 77.7 61.4 23.5 25.3 50.7 22.7 43.0
↪→ + SPEC-RL 40 126.2 1.69× 37.5 80.4 63.2 22.4 27.3 51.3 23.7 43.7

PPO 50 315.7 1.00× 35.0 79.5 61.8 26.8 25.6 51.5 21.8 43.1
↪→ + SPEC-RL 50 157.3 1.68× 40.0 80.9 64.4 26.1 25.9 54.2 26.6 45.4

PPO 60 377.7 1.00× 27.5 81.6 63.8 29.4 26.8 53.9 23.3 43.8
↪→ + SPEC-RL 60 172.0 1.79× 35.0 82.0 64.2 23.5 27.0 53.8 24.4 44.3

PPO 70 440.0 1.00× 35.0 79.5 60.6 25.7 26.7 55.0 22.9 43.6
↪→ + SPEC-RL 70 194.7 1.83× 35.0 80.7 65.8 27.6 26.8 55.1 25.9 45.3

PPO 80 503.0 1.00× 45.0 81.4 63.8 25.4 29.3 58.6 23.7 46.7
↪→ + SPEC-RL 80 207.2 1.93× 40.0 82.6 63.6 29.8 28.0 54.3 25.7 46.3

PPO 90 565.1 1.00× 35.0 82.0 63.0 26.8 25.3 59.4 25.5 45.3
↪→ + SPEC-RL 90 230.8 1.94× 35.0 82.0 64.8 25.4 25.9 58.6 25.9 45.4

15

Table 8: Intermediate training results of Qwen-3-8B-Base on DeepMath-6K with PPO and SPEC-RL. We report
rollout efficiency and accuracy every 10 training steps, with PPO and its SPEC-RL variant interleaved.

Algorithm Step
Rollout Efficiency Math Reasoning OOD

AVG
Tokens (M) Speedup AMC23 GSM8K MATH

500
Minerva

Math
Olympiad

Bench
MMLU
STEM IFEval

Base Model 0 - - 40.0 83.0 67.4 27.2 34.1 60.4 29.9 48.9
PPO 10 73.4 1.00× 42.5 91.1 75.4 33.5 43.4 63.2 32.2 54.5
↪→ + SPEC-RL 10 51.9 1.30× 50.0 92.1 79.6 32.0 42.4 62.6 36.0 56.4

PPO 20 144.8 1.00× 60.0 93.1 81.0 39.3 45.3 67.0 35.1 60.1
↪→ + SPEC-RL 20 85.6 1.48× 52.5 93.3 82.0 39.7 45.5 67.4 37.9 59.8

PPO 30 241.0 1.00× 62.5 93.4 82.8 38.6 46.7 77.6 37.3 62.7
↪→ + SPEC-RL 30 115.6 1.75× 60.0 92.6 82.2 40.4 48.1 74.6 42.7 62.9

PPO 40 359.0 1.00× 60.0 92.9 83.6 41.9 49.3 79.5 36.6 63.4
↪→ + SPEC-RL 40 159.4 1.87× 62.5 94.0 84.0 39.3 49.5 77.6 43.3 64.3

PPO 50 484.2 1.00× 65.0 93.5 86.0 41.2 51.6 82.1 39.7 65.6
↪→ + SPEC-RL 50 197.9 1.98× 67.5 93.1 84.2 42.6 49.3 81.9 41.8 65.8

PPO 60 609.9 1.00× 75.0 94.2 85.4 42.6 49.9 82.9 42.0 67.4
↪→ + SPEC-RL 60 251.2 1.95× 67.5 93.3 84.6 43.8 52.0 81.7 43.6 66.6

PPO 70 735.0 1.00× 82.5 93.5 84.4 44.1 51.1 83.6 42.9 68.9
↪→ + SPEC-RL 70 307.9 1.91× 70.0 93.7 84.6 42.6 50.8 84.0 44.7 67.2

PPO 80 859.9 1.00× 62.5 93.8 85.6 42.3 51.9 83.3 40.9 65.8
↪→ + SPEC-RL 80 358.1 1.90× 75.0 93.5 83.4 44.1 50.2 84.4 43.1 67.7

PPO 90 984.0 1.00× 70.0 94.2 85.8 43.0 51.6 83.8 41.6 67.1
↪→ + SPEC-RL 90 400.1 1.94× 75.0 92.9 85.2 43.4 50.8 84.4 41.0 67.5

Table 9: Intermediate training results of LLaMA-3.2-1B-Instruct on DeepMath-6K with PPO and SPEC-RL. We
report rollout efficiency and accuracy every 10 training steps, with PPO and its SPEC-RL variant interleaved.

Algorithm Step
Rollout Efficiency Math Reasoning OOD

AVG
Tokens (M) Speedup AMC23 GSM8K MATH

500
Minerva

Math
Olympiad

Bench
MMLU
STEM IFEval

Base Model 0 - - 0.0 26.7 14.2 4.0 2.8 32.6 37.0 16.8
PPO 10 65.5 1.00× 2.5 26.5 11.4 4.0 3.6 33.0 42.0 17.6
↪→ + SPEC-RL 10 50.2 1.26× 20.0 25.8 14.0 2.6 3.7 32.5 41.0 19.9

PPO 20 131.1 1.00× 7.5 26.7 16.2 3.7 4.7 33.9 35.9 18.4
↪→ + SPEC-RL 20 89.0 1.35× 7.5 27.9 16.2 2.9 5.0 34.1 41.2 19.3

PPO 30 192.0 1.00× 12.5 28.8 17.2 3.7 4.1 35.3 38.6 20.0
↪→ + SPEC-RL 30 118.3 1.47× 10.0 29.8 17.4 4.4 6.4 34.2 38.8 20.1

PPO 40 250.3 1.00× 5.0 29.7 19.6 2.9 4.4 35.1 39.0 19.4
↪→ + SPEC-RL 40 134.8 1.63× 15.0 31.6 18.6 3.3 6.1 33.2 39.9 21.1

PPO 50 306.8 1.00× 5.0 31.3 19.2 4.8 4.6 32.3 40.1 19.6
↪→ + SPEC-RL 50 147.2 1.78× 10.0 31.9 19.4 5.1 5.0 35.3 40.3 21.0

PPO 60 361.6 1.00× 7.5 30.3 18.4 5.1 4.3 35.1 41.6 20.3
↪→ + SPEC-RL 60 160.5 1.89× 12.5 31.5 19.2 4.8 5.5 34.4 39.9 21.1

PPO 70 415.4 1.00× 12.5 31.0 17.8 3.7 6.1 35.1 40.1 20.9
↪→ + SPEC-RL 70 175.8 1.95× 12.5 32.6 19.6 3.3 5.5 34.9 39.9 21.2

PPO 80 469.0 1.00× 10.0 34.1 19.6 4.8 4.1 34.8 41.6 21.3
↪→ + SPEC-RL 80 188.8 2.02× 15.0 33.5 19.0 5.5 6.4 36.1 40.3 22.3

PPO 90 521.5 1.00× 10.0 31.6 20.8 4.0 6.4 34.3 42.7 21.4
↪→ + SPEC-RL 90 210.6 2.01× 10.0 32.4 20.2 5.5 5.0 35.3 40.7 21.3

16

Table 10: Intermediate training results of Qwen-3-1.7B-Base on DeepMath-6K with DAPO and SPEC-RL. Since
DAPO adopts Dynamic Sampling, one training step may correspond to multiple generation steps; thus we additionally
report the Gen-Step column to indicate how many rollout batches the model has consumed.

Algorithm Step Gen-Step
Rollout Efficiency Math Reasoning OOD

AVG
Tokens (M) Speedup AMC23 GSM8K MATH

500
Minerva

Math
Olympiad

Bench
MMLU
STEM IFEval

Base Model 0 0 - - 22.5 59.1 45.0 12.5 16.7 39.3 17.9 30.4
DAPO 5 10 65.2 1.00× 25.0 69.8 50.0 17.6 20.0 41.5 20.1 34.9
↪→ + SPEC-RL 5 10 46.7 1.25× 35.0 69.4 53.4 20.2 21.0 43.0 17.7 37.1

DAPO 10 20 127.4 1.00× 32.5 76.0 58.4 19.1 22.4 42.9 19.6 38.7
↪→ + SPEC-RL 10 20 70.6 1.52× 15.0 76.3 56.8 16.5 20.7 44.1 21.6 35.9

DAPO 15 30 187.7 1.00× 27.5 76.5 56.4 19.9 22.7 45.8 20.7 38.5
↪→ + SPEC-RL 15 30 95.5 1.60× 25.0 78.2 58.4 23.9 24.9 45.0 26.1 40.2

DAPO 20 40 247.6 1.00× 35.0 78.0 54.8 23.2 21.8 46.8 23.3 40.4
↪→ + SPEC-RL 20 40 109.5 1.74× 32.5 78.5 57.2 25.0 24.9 47.7 24.6 41.5

DAPO 25 50 307.5 1.00× 35.0 77.2 59.4 20.6 25.9 47.2 19.4 40.7
↪→ + SPEC-RL 25 50 124.9 1.84× 37.5 77.8 59.0 22.8 23.0 49.2 25.7 42.1

DAPO 30 60 367.0 1.00× 35.0 79.1 60.6 25.0 24.3 48.0 22.2 42.0
↪→ + SPEC-RL 30 60 137.7 1.94× 32.5 79.4 60.4 24.6 25.0 50.4 26.2 42.6

DAPO 35 70 425.6 1.00× 37.5 78.5 59.8 27.9 24.3 49.7 22.7 42.9
↪→ + SPEC-RL 35 70 149.1 2.02× 30.0 80.3 62.2 25.0 25.3 51.6 25.0 42.8

DAPO 40 80 484.6 1.00× 27.5 79.8 61.6 24.6 25.0 50.8 22.7 41.7
↪→ + SPEC-RL 40 80 160.2 2.10× 40.0 79.2 60.2 25.4 26.5 53.7 27.4 44.6

DAPO 45 90 543.1 1.00× 30.0 79.6 60.8 24.6 23.0 52.2 24.8 42.1
↪→ + SPEC-RL 45 90 171.6 2.17× 22.5 80.1 60.0 25.7 25.5 53.5 27.0 42.0

Table 11: Intermediate training results of Qwen-3-8B-Base on DeepMath-6K with DAPO and SPEC-RL. Since
DAPO adopts Dynamic Sampling, one training step may correspond to multiple generation steps; thus we additionally
report the Gen-Step column to indicate how many rollout batches the model has consumed.

Algorithm Step Gen-Step
Rollout Efficiency Math Reasoning OOD

AVG
Tokens (M) Speedup AMC23 GSM8K MATH

500
Minerva

Math
Olympiad

Bench
MMLU
STEM IFEval

Qwen-3-8B-DAPO-SPEC-RL
Base Model 0 0 - - 40.0 83.0 67.4 27.2 34.1 60.4 29.9 48.9
DAPO 5 10 75.0 1.00× 62.5 89.8 73.6 27.9 39.1 60.5 32.0 55.1
↪→ + SPEC-RL 5 10 59.0 1.20× 55.0 90.9 75.0 32.7 38.8 63.3 34.0 55.7

DAPO 10 20 148.8 1.00× 60.0 91.9 78.6 36.8 43.4 64.0 36.0 58.7
↪→ + SPEC-RL 10 20 90.3 1.45× 60.0 92.8 79.0 37.1 40.7 63.0 34.2 58.1

DAPO 15 30 235.5 1.00× 67.5 93.3 80.6 39.7 47.4 70.6 38.1 62.5
↪→ + SPEC-RL 15 30 116.8 1.73× 60.0 91.9 81.8 42.6 47.9 69.6 39.0 61.8

DAPO 20 40 354.9 1.00× 62.5 93.1 84.6 41.2 46.1 77.5 36.4 63.1
↪→ + SPEC-RL 20 40 152.2 2.00× 70.0 93.5 83.8 39.0 49.8 75.4 38.1 64.2

DAPO 25 51 509.1 1.00× 62.5 93.1 83.4 39.3 49.6 79.8 38.8 63.8
↪→ + SPEC-RL 25 50 199.8 2.19× 72.5 92.6 85.4 41.5 47.9 78.7 42.1 65.8

DAPO 30 63 685.0 1.00× 62.5 92.5 83.8 44.5 48.9 81.1 39.2 64.6
↪→ + SPEC-RL 30 60 239.9 2.48× 70.0 93.9 84.0 39.7 48.7 80.2 40.3 65.3

DAPO 35 75 867.6 1.00× 75.0 92.6 82.8 40.8 49.5 81.9 38.1 65.8
↪→ + SPEC-RL 35 70 278.9 2.73× 72.5 93.6 84.8 40.4 49.9 80.8 44.4 66.6

DAPO 40 87 1052.2 1.00× 75.0 93.3 84.8 40.1 48.6 82.4 39.6 66.3
↪→ + SPEC-RL 40 82 326.2 2.88× 65.0 93.8 84.4 43.8 50.4 82.2 44.4 66.3

17

Table 12: Intermediate training results of LLaMA-3.2-1B-Instruct on DeepMath-6K with DAPO and SPEC-RL. Since
DAPO adopts Dynamic Sampling, one training step may correspond to multiple generation steps; thus we additionally
report the Gen-Step column to indicate how many rollout batches the model has consumed.

Algorithm Step Gen-Step
Rollout Efficiency Math Reasoning OOD

AVG
Tokens (M) Speedup AMC23 GSM8K MATH

500
Minerva

Math
Olympiad

Bench
MMLU
STEM IFEval

LLaMA-3.2-1B-DAPO-SPEC-RL
Base Model 0 0 - - 0.0 26.7 14.2 4.0 2.8 32.6 37.0 16.8
DAPO 5 15 105.6 1.00× 2.5 27.1 14.4 2.9 3.3 32.6 38.8 17.4
↪→ + SPEC-RL 5 15 52.4 1.95× 7.5 27.0 14.4 2.6 3.0 32.7 38.3 17.9

DAPO 10 27 179.8 1.00× 5.0 25.5 14.6 2.6 4.1 34.8 40.3 18.1
↪→ + SPEC-RL 10 28 69.2 2.16× 17.5 25.6 16.6 2.6 4.9 33.7 39.2 20.0

DAPO 15 38 239.8 1.00× 5.0 27.1 18.4 4.4 4.4 33.9 37.3 18.6
↪→ + SPEC-RL 15 39 79.2 2.19× 5.0 28.9 16.4 6.2 3.4 33.9 37.5 18.8

DAPO 20 53 322.1 1.00× 17.5 27.3 18.8 2.9 5.6 34.6 38.8 20.8
↪→ + SPEC-RL 20 53 92.4 2.31× 7.5 29.9 19.6 5.9 5.5 34.2 38.1 20.1

DAPO 25 68 402.9 1.00× 5.0 26.6 19.8 3.3 4.6 34.5 38.3 18.9
↪→ + SPEC-RL 25 68 105.3 2.43× 10.0 34.0 19.8 4.0 6.1 35.5 35.5 20.7

DAPO 30 83 482.6 1.00× 7.5 29.6 19.2 4.0 5.5 33.0 38.6 19.6
↪→ + SPEC-RL 30 83 123.1 2.48× 10.0 34.9 20.2 4.0 5.5 35.5 38.4 21.2

10 20 30 40 50 60 70 80 90
Step

400

500

600

700

800

900

1000

1100

1200

Av
er

ag
e

Ve
rif

ie
d

Pr
ef

ix
 L

en
gt

h

(a) GRPO

10 20 30 40 50 60 70 80 90
Step

300

400

500

600

700

800

900

1000

Av
er

ag
e

Ve
rif

ie
d

Pr
ef

ix
 L

en
gt

h

(b) PPO

0 5 10 15 20 25 30 35 40 45
Step

500

600

700

800

900

Av
er

ag
e

Ve
rif

ie
d

Pr
ef

ix
 L

en
gt

h

(c) DAPO

LLaMA-3.2-1B-Instruct Qwen3-8B-Base Qwen3-1.7B-Base

Figure 7: Average verified prefix length trajectories of SPEC-RL under three RL algorithms: (a) GRPO, (b) PPO,
and (c) DAPO. The y-axis reports the average length of the verified speculative prefix per training step, and the x-axis
is the training step. colors denote model backbones: red: LLaMA-3.2-1B-Instruct, yellow: Qwen3-8B-Base, blue:
Qwen3-1.7B-Base.

18

10 20 30 40 50 60 70 80 90
Step

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Fu
ll

R
eu

se
 R

at
io

(a) GRPO

10 20 30 40 50 60 70 80 90
Step

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Fu
ll

R
eu

se
 R

at
io

(b) PPO

0 5 10 15 20 25 30 35 40 45
Step

0.4

0.5

0.6

0.7

0.8

Fu
ll

R
eu

se
 R

at
io

(c) DAPO

LLaMA-3.2-1B-Instruct Qwen3-8B-Base Qwen3-1.7B-Base

Figure 8: Full reuse ratio trajectories of SPEC-RL under three RL algorithms: (a) GRPO, (b) PPO, and (c) DAPO.
The y-axis reports the fraction of rollouts per step that are fully reused, and the x-axis the training step. colors denote
model backbones: red: LLaMA-3.2-1B-Instruct, yellow: Qwen3-8B-Base, blue: Qwen3-1.7B-Base. Across settings,
SPEC-RL quickly stabilizes at a high full reuse ratio, indicating effective speculative reuse during training.

0 10 20 30 40 50 60 70 80 90
Step

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

R
ew

ar
d

(a) GRPO

0 10 20 30 40 50 60 70 80 90
Step

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

R
ew

ar
d

(b) PPO

0 5 10 15 20 25 30 35 40 45
Step

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

R
ew

ar
d

(c) DAPO

LLaMA-3.2-1B-Instruct (SPEC-RL)
LLaMA-3.2-1B-Instruct (Baseline)

Qwen3-8B-Base (SPEC-RL)
Qwen3-8B-Base (Baseline)

Qwen3-1.7B-Base (SPEC-RL)
Qwen3-1.7B-Base (Baseline)

Figure 9: Training reward trajectories of SPEC-RL versus baseline under three RL algorithms: (a) GRPO, (b) PPO,
and (c) DAPO. The y-axis reports reward, and the x-axis the training step. colors denote model backbones: red:
LLaMA-3.2-1B-Instruct, yellow: Qwen3-8B-Base, blue: Qwen3-1.7B-Base, while solid lines indicate SPEC-RL and
dashed lines the corresponding vanilla baselines. SPEC-RL matches or exceeds baseline rewards under different
algorithms across all backbones.

19

0 10 20 30 40 50 60 70 80 90
Step

200

400

600

800

R
ol

lo
ut

 T
im

e
(s

)

(a) GRPO

0 10 20 30 40 50 60 70 80 90
Step

100

200

300

400

500

600

700

800

R
ol

lo
ut

 T
im

e
(s

)

(b) PPO

0 5 10 15 20 25 30 35 40 45
Step

250

500

750

1000

1250

1500

1750

2000

2250

R
ol

lo
ut

 T
im

e
(s

)

(c) DAPO

LLaMA-3.2-1B-Instruct (SPEC-RL)
LLaMA-3.2-1B-Instruct (Baseline)

Qwen3-8B-Base (SPEC-RL)
Qwen3-8B-Base (Baseline)

Qwen3-1.7B-Base (SPEC-RL)
Qwen3-1.7B-Base (Baseline)

Figure 10: Training rollout time of SPEC-RL versus baseline under three RL algorithms: (a) GRPO, (b) PPO, and (c)
DAPO. The y-axis reports rollout time (seconds) and the x-axis the training step. colors denote model backbones: red:
LLaMA-3.2-1B-Instruct, yellow: Qwen3-8B-Base, blue: Qwen3-1.7B-Base, while solid lines indicate SPEC-RL and
dashed lines the corresponding vanilla baselines. Across algorithms and models, SPEC-RL yields consistently lower
rollout time than the baselines.

20

Table 13: End-to-end training time comparison across models and algorithms. We report both the wall-clock training
hours (“End-to-end (h)”) and the average step time (“Total (s)”) with a detailed breakdown. validation refers to our
newly introduced speculative decoding process that verifies old-policy rollouts in parallel; assemble denotes combining
verified prefixes with newly generated continuations to form complete rollouts; the remaining parts (reward, old-log-
probs, ref, values, adv, update-critic, update-actor, others) follow the standard pipeline of the verl framework in
execution order.

End-to-end (h) Average step time (s)
Algorithm Total Total ∆ vs. base verification rollout assembly reward old-log-probs ref values adv update-critic update-actor others

Qwen-3-1.7B-Base
GRPO 12.63 505.1 – – 309.9 – 91.0 17.2 15.8 – 0.4 – 56.0 14.9
↪→ + SPEC-RL 8.65 346.0 ↓ 159.1 22.1 135.2 (2.29×) 1.5 81.0 17.1 16.3 – 0.5 – 56.2 16.2

PPO 14.10 563.9 – – 308.1 – 100.5 17.2 – 14.0 4.7 46.0 56.5 16.9
↪→ + SPEC-RL 10.78 431.2 ↓ 132.7 22.7 158.6 (1.94×) 1.4 94.1 17.3 – 13.8 4.6 45.0 55.5 18.1

DAPO 11.10 443.8 – – 301.3 – 93.1 8.6 – – 0.3 – 25.9 14.6
↪→ + SPEC-RL 7.90 316.0 ↓ 127.9 21.0 139.0 (2.17×) 1.4 97.9 18.1 – – 0.2 – 25.9 12.7

Qwen-3-8B-Base
GRPO 31.66 1266.4 – – 768.2 – 73.2 66.8 66.9 – 4.2 – 263.8 23.4
↪→ + SPEC-RL 21.03 841.0 ↓ 425.4 74.7 305.8 (2.51×) 1.3 61.4 63.8 62.4 – 4.9 – 248.8 18.0

PPO 34.85 1393.9 – – 676.7 – 70.5 65.4 – 57.4 4.2 224.1 260.4 35.3
↪→ + SPEC-RL 26.97 1078.8 ↓ 315.1 71.5 349.3 (1.94×) 1.4 64.9 59.6 – 52.1 4.9 205.9 236.9 32.5

DAPO 24.29 971.8 – – 699.2 – 64.4 66.3 – – 0.1 – 121.1 20.7
↪→ + SPEC-RL 12.90 515.9 ↓ 455.9 51.0 243.0 (2.88×) 1.1 54.0 51.2 – – 0.1 – 97.5 18.0

LLaMA-3.2-1B-Instruct
GRPO 10.20 408.0 – – 229.7 – 105.8 12.6 11.5 – 0.4 – 34.7 13.2
↪→ + SPEC-RL 7.28 291.3 ↓ 116.7 17.2 88.3 (2.60×) 1.4 110.4 13.0 11.9 – 0.5 – 34.4 14.4

PPO 10.94 437.6 – – 218.9 – 117.6 12.5 – 10.0 4.8 10.0 32.6 31.3
↪→ + SPEC-RL 8.60 344.0 ↓ 93.6 17.5 108.9 (2.01×) 1.3 110.9 12.4 – 10.1 4.6 10.1 34.3 33.8

DAPO 9.77 328.4 – – 198.4 – 100.8 11.2 – – 0.1 – 9.6 8.5
↪→ + SPEC-RL 6.97 238.4 ↓ 90.0 13.4 80.0 (2.48×) 1.1 110.5 11.5 – – 0.1 – 9.9 12.0

A.4 END-TO-END TIME BREAKDOWN

Table 13 reports the per-stage breakdown of training time. In the vanilla baseline, rollout generation dominates the
runtime, often accounting for more than 60% of the total. With SPEC-RL, this cost is largely shifted into a lightweight
verification stage, where cached rollouts are first verified in parallel under the current policy and then evaluated by the
speculative decoding rule to determine the rejection position, and a minimal assembly stage, where verified prefixes
and regenerated suffixes are merged into complete responses. Both stages add only minor overhead (on Qwen-3-1.7B-
Base, verification ∼20s and assembly ∼1–2s), while the total step time is reduced by about 129–161s, making the
extra cost negligible compared to the savings from reduced rollout. For instance, on Qwen-3-8B-Base/GRPO, the
rollout time decreases from 768.2s to 305.8s, while all other stages, such as reward computation and policy updates,
remain nearly unchanged. Overall, although these new stages slightly increase non-rollout costs, the dominant effect
is the 2–3 times reduction in rollout tokens, yielding substantially faster end-to-end training.

A.5 GENERALITY ACROSS DATASETS

To examine whether the gains of SPEC-RL depend on a specific training corpus, we conduct experiments on two
distinct datasets: DeepMath-6K and SimpleRL-8K. Results in Table 14 show that SPEC-RL consistently improves
rollout efficiency across both settings. For example, on Qwen-3-1.7B-Base with GRPO, rollout tokens drop from
554.8M to 182.7M on DeepMath-6K and from 639.4M to 354.0M on SimpleRL-8K. Accuracy remains comparable or
slightly improved, confirming that the efficiency benefits of SPEC-RL are robust to the choice of dataset. Intermediate

Table 14: Ablation study on different training datasets. Results show that our method maintains improvements in
rollout efficiency and accuracy across both Deepmath-6K and SimpleRL-8K settings.

Algorithm
Rollout Efficiency Math Reasoning OOD

AVG
Tokens (M) Speedup AMC23 GSM8K MATH

500
Minerva

Math
Olympiad

Bench
MMLU
STEM IFEval

Deepmath-6K (Qwen-3-1.7B-Base)
GRPO 554.8 1.00× 42.5 82.6 64.4 26.5 25.5 60.7 24.4 46.7
↪→ + SPEC-RL 182.7 2.29× 37.5 84.4 68.0 29.4 29.3 58.3 28.8 48.0

SimpleRL-8K (Qwen-3-1.7B-Base)
GRPO 639.4 1.00× 45.0 83.8 68.2 27.2 30.5 49.4 24.0 46.9
↪→ + SPEC-RL 354.0 1.53× 40.0 85.1 72.2 27.2 32.1 57.4 27.7 48.8

21

Table 15: Intermediate training results of Qwen-3-1.7B-Base on SimpleRL-8K with GRPO and SPEC-RL. We report
rollout efficiency and accuracy every 10 training steps, with GRPO and its SPEC-RL variant interleaved.

Algorithm Step
Rollout Efficiency Math Reasoning OOD

AVG
Tokens (M) Speedup AMC23 GSM8K MATH

500
Minerva

Math
Olympiad

Bench
MMLU
STEM IFEval

Base Model 0 - - 22.5 59.1 45.0 12.5 16.7 39.3 17.9 30.4
GRPO 10 61.5 1.00× 35.0 76.7 57.6 19.1 22.7 44.4 21.1 39.5
↪→ + SPEC-RL 10 50.5 1.16× 25.0 75.9 57.8 19.1 24.9 44.9 21.3 38.4

GRPO 20 123.1 1.00× 27.5 78.5 60.6 22.1 25.9 46.1 23.7 40.6
↪→ + SPEC-RL 20 84.3 1.33× 25.0 79.3 62.2 20.6 28.0 46.4 20.9 40.3

GRPO 30 185.3 1.00× 45.0 80.2 63.8 24.3 27.0 46.1 23.7 44.3
↪→ + SPEC-RL 30 112.2 1.47× 45.0 81.5 61.4 26.8 28.7 49.0 25.1 45.4

GRPO 40 247.7 1.00× 32.5 80.1 63.0 22.4 28.1 46.9 21.1 42.0
↪→ + SPEC-RL 40 136.8 1.57× 37.5 81.3 65.8 24.3 29.5 49.8 26.1 44.9

GRPO 50 312.5 1.00× 37.5 79.7 65.2 27.2 26.8 48.7 23.1 44.0
↪→ + SPEC-RL 50 171.4 1.58× 35.0 83.9 66.2 28.7 30.8 52.9 26.2 46.2

GRPO 60 377.7 1.00× 40.0 82.0 64.6 26.5 28.0 48.5 23.3 44.7
↪→ + SPEC-RL 60 206.9 1.58× 47.5 83.1 67.8 26.8 32.0 53.5 25.5 48.0

GRPO 70 444.8 1.00× 37.5 81.7 66.0 26.5 26.5 48.6 20.9 44.0
↪→ + SPEC-RL 70 246.5 1.56× 47.5 83.2 70.0 28.3 31.3 53.8 27.9 48.9

GRPO 80 512.9 1.00× 45.0 82.3 66.8 26.5 30.5 47.5 25.0 46.2
↪→ + SPEC-RL 80 283.2 1.55× 47.5 83.9 68.4 26.5 31.7 55.5 25.0 48.4

GRPO 90 582.6 1.00× 42.5 83.2 66.6 25.7 29.5 48.4 24.6 45.8
↪→ + SPEC-RL 90 324.8 1.53× 35.0 83.5 70.4 27.9 31.9 55.4 27.0 47.3

GRPO 100 639.4 1.00× 45.0 83.8 68.2 27.2 30.5 49.4 24.0 46.9
↪→ + SPEC-RL 100 354.0 1.54× 40.0 85.1 72.2 27.2 32.1 57.4 27.7 48.8

performance on SimpleRL-8K is reported in Table 15, while the detailed results for DeepMath-6K can be found in
Table 4. These results suggest that the efficiency improvements of SPEC-RL do not rely on a particular training
distribution.

A.6 IMPACT OF TRAINING SET SIZE ON ACCELERATION

Since SPEC-RL accelerates training by reusing cached rollouts from the previous epoch, acceleration can only take
effect starting from the second epoch. To study how dataset size influences this effect, we vary the training set size to
2K, 3K, 4K, 5K, and 6K samples, and train Qwen-3-1.7B-Base with GRPO. Figure 11 reports the rollout time across
training steps.

We observe that smaller datasets lead to earlier reuse opportunities, since epochs finish more quickly and the second
epoch arrives sooner. For example, with 2K samples, the rollout time drops sharply after step 3, whereas with 6K
samples, the reduction is delayed until later steps. Across all settings, rollout time decreases steadily once reuse
begins, with larger speedups achieved as training progresses. The markers in the figure denote the first reuse points
(the first step of epoch 2), where SPEC-RL begins to take effect. This analysis confirms that the efficiency gains of
SPEC-RL depend not only on algorithm and model choice, but also on the dataset size, which determines how soon
reuse can be activated during training.

A.7 RANDOM REUSE RESULTS

For completeness, we also report the full training trajectories of the Random Reuse baseline on Qwen-3-1.7B-Base,
trained with GRPO on DeepMath-6K. Table 16 interleaves results of GRPO and Random Reuse every 10 training steps,
providing a step-wise view of rollout efficiency and accuracy. While Table 2 summarizes the overall comparison, these
detailed results illustrate how Random Reuse accelerates rollouts but produces unstable performance over the course
of training.

A.8 FULL LENIENCE ABLATION RESULTS

For completeness, we provide the step-level results corresponding to the lenience ablation in Section 4.3. While Table 3
reports only the final-step outcomes for comparison across different lenience values, we include detailed intermediate
results every 10 training steps here. These tables document how rollout efficiency and accuracy evolve throughout
training under various lenience settings (ℓ = 1, e0.2, e0.5, e0.8, e1.0, e2.0, and ℓ→∞), complementing the aggregated
trends shown in Table 3.

22

1 2 3 4 5 6 7 8 9 10 11 12
Step

50

100

150

200

250

300

350

R
ol

lo
ut

 T
im

e
(s

)

2k 3k 4k 5k 6k vanilla

Figure 11: Rollout time under different training set sizes (2K–6K) with GRPO on Qwen-3-1.7B-Base. Markers
highlight the first reuse points at the start of epoch 2, when SPEC-RL begins to accelerate rollouts.

Table 16: Intermediate training results of Qwen-3-1.7B-Base on DeepMath-6K with GRPO and Random Reuse. We
report rollout efficiency and accuracy every 10 training steps, with GRPO and its Random Reuse variant interleaved.

Algorithm Step
Rollout Efficiency Math Reasoning OOD

AVG
Tokens (M) Speedup AMC23 GSM8K MATH

500
Minerva

Math
Olympiad

Bench
MMLU
STEM IFEval

Base Model 0 - - 22.5 59.1 45.0 12.5 16.7 39.3 17.9 30.4
GRPO 10 65.8 1.00× 37.5 74.0 54.0 18.8 22.8 43.9 20.3 38.8
↪→ + Random Reuse 10 58.0 1.11× 37.5 74.1 57.8 21.0 21.0 42.9 22.0 39.5

GRPO 20 127.4 1.00× 27.5 78.2 57.8 25.4 24.7 45.5 20.3 39.9
↪→ + Random Reuse 20 98.9 1.43× 25.0 77.6 59.4 24.6 24.1 46.0 25.9 40.4

GRPO 30 187.7 1.00× 37.5 80.1 60.4 22.4 25.0 47.9 20.9 42.0
↪→ + Random Reuse 30 134.1 1.61× 35.0 78.9 63.2 26.8 24.9 50.6 29.2 44.1

GRPO 40 248.3 1.00× 32.5 79.9 65.0 23.5 24.7 50.7 21.3 42.5
↪→ + Random Reuse 40 165.4 1.75× 40.0 80.9 64.0 26.1 28.4 56.8 27.7 46.3

GRPO 50 309.1 1.00× 35.0 81.2 64.2 25.7 24.6 53.7 25.1 44.2
↪→ + Random Reuse 50 194.1 1.89× 35.0 81.0 63.2 27.9 27.0 57.7 25.7 45.4

GRPO 60 370.4 1.00× 35.0 81.3 63.6 28.3 26.7 56.0 24.0 45.0
↪→ + Random Reuse 60 221.8 2.03× 22.5 80.2 64.2 24.6 25.9 59.2 26.1 43.2

GRPO 70 431.9 1.00× 42.5 82.3 61.8 26.5 28.1 55.5 26.2 46.1
↪→ + Random Reuse 70 249.6 2.14× 32.5 80.7 63.2 27.2 26.1 60.9 25.5 45.2

GRPO 80 493.5 1.00× 25.0 82.0 64.4 24.3 26.4 59.4 25.0 43.8
↪→ + Random Reuse 80 277.5 2.25× 25.0 78.7 57.0 21.7 22.7 44.6 22.4 38.9

GRPO 90 554.8 1.00× 42.5 82.6 64.4 26.5 25.5 60.7 24.4 46.7
↪→ + Random Reuse 90 304.5 2.35× 37.5 80.0 60.4 21.7 25.3 53.1 24.0 43.1

23

Table 17: Intermediate training results of Qwen-3-1.7B-Base on DeepMath-6K with GRPO and SPEC-RL at lenience
ℓ = 1. We report rollout efficiency and accuracy every 10 training steps, illustrating the progression of model perfor-
mance during training.

Algorithm Step
Rollout Efficiency Math Reasoning OOD

AVG
Tokens (M) Speedup AMC23 GSM8K MATH

500
Minerva

Math
Olympiad

Bench
MMLU
STEM IFEval

Base Model 0 - - 22.5 59.1 45.0 12.5 16.7 39.3 17.9 30.4
GRPO 10 65.8 1.00× 37.5 74.0 54.0 18.8 22.8 43.9 20.3 38.8
↪→ + SPEC-RL ℓ = 1 10 63.5 1.03× 30.0 74.8 55.2 20.2 21.2 44.5 18.9 37.8

GRPO 20 127.4 1.00× 27.5 78.2 57.8 25.4 24.7 45.5 20.3 39.9
↪→ + SPEC-RL ℓ = 1 20 118.3 1.05× 35.0 78.2 61.6 25.4 22.4 45.1 22.9 41.5

GRPO 30 187.7 1.00× 37.5 80.1 60.4 22.4 25.0 47.9 20.9 42.0
↪→ + SPEC-RL ℓ = 1 30 168.0 1.07× 20.0 79.5 61.2 25.0 25.0 49.9 23.7 40.6

GRPO 40 248.3 1.00× 32.5 79.9 65.0 23.5 24.7 50.7 21.3 42.5
↪→ + SPEC-RL ℓ = 1 40 213.5 1.11× 40.0 80.2 63.0 27.2 24.9 51.7 22.4 44.2

GRPO 50 309.1 1.00× 35.0 81.2 64.2 25.7 24.6 53.7 25.1 44.2
↪→ + SPEC-RL ℓ = 1 50 257.0 1.14× 42.5 80.3 63.2 29.0 24.7 54.0 24.4 45.4

GRPO 60 370.4 1.00× 35.0 81.3 63.6 28.3 26.7 56.0 24.0 45.0
↪→ + SPEC-RL ℓ = 1 60 298.5 1.17× 42.5 80.2 64.2 26.8 26.7 55.6 23.7 45.7

GRPO 70 431.9 1.00× 42.5 82.3 61.8 26.5 28.1 55.5 26.2 46.1
↪→ + SPEC-RL ℓ = 1 70 339.2 1.19× 35.0 81.0 62.6 28.7 28.0 58.0 26.8 45.7

GRPO 80 493.5 1.00× 25.0 82.0 64.4 24.3 26.4 59.4 25.0 43.8
↪→ + SPEC-RL ℓ = 1 80 379.7 1.20× 37.5 81.4 67.4 22.8 28.0 60.2 23.7 45.9

GRPO 90 554.8 1.00× 42.5 82.6 64.4 26.5 25.5 60.7 24.4 46.7
↪→ + SPEC-RL ℓ = 1 90 419.1 1.22× 40.0 81.8 63.8 28.7 26.5 59.6 25.9 46.6

Table 18: Intermediate training results of Qwen-3-1.7B-Base on DeepMath-6K with GRPO and SPEC-RL at lenience
ℓ = e0.2. We report rollout efficiency and accuracy every 10 training steps, illustrating the progression of model
performance during training.

Algorithm Step
Rollout Efficiency Math Reasoning OOD

AVG
Tokens (M) Speedup AMC23 GSM8K MATH

500
Minerva

Math
Olympiad

Bench
MMLU
STEM IFEval

Base Model 0 - - 22.5 59.1 45.0 12.5 16.7 39.3 17.9 30.4
GRPO 10 65.8 1.00× 37.5 74.0 54.0 18.8 22.8 43.9 20.3 38.8
↪→ + SPEC-RL ℓ = e0.2 10 53.6 1.19× 32.5 73.2 55.6 19.1 22.1 42.4 20.0 37.8

GRPO 20 127.4 1.00× 27.5 78.2 57.8 25.4 24.7 45.5 20.3 39.9
↪→ + SPEC-RL ℓ = e0.2 20 92.7 1.29× 40.0 78.8 60.6 25.4 25.5 46.2 20.0 42.5

GRPO 30 187.7 1.00× 37.5 80.1 60.4 22.4 25.0 47.9 20.9 42.0
↪→ + SPEC-RL ℓ = e0.2 30 120.5 1.42× 32.5 79.6 60.8 26.8 27.0 49.5 22.9 42.7

GRPO 40 248.3 1.00× 32.5 79.9 65.0 23.5 24.7 50.7 21.3 42.5
↪→ + SPEC-RL ℓ = e0.2 40 143.6 1.54× 32.5 80.3 61.8 28.3 26.4 51.8 22.2 43.3

GRPO 50 309.1 1.00× 35.0 81.2 64.2 25.7 24.6 53.7 25.1 44.2
↪→ + SPEC-RL ℓ = e0.2 50 166.1 1.62× 37.5 80.4 65.2 27.6 25.9 54.4 25.5 45.2

GRPO 60 370.4 1.00× 35.0 81.3 63.6 28.3 26.7 56.0 24.0 45.0
↪→ + SPEC-RL ℓ = e0.2 60 186.1 1.70× 37.5 81.7 63.6 29.4 25.5 55.0 24.4 45.3

GRPO 70 431.9 1.00× 42.5 82.3 61.8 26.5 28.1 55.5 26.2 46.1
↪→ + SPEC-RL ℓ = e0.2 70 206.5 1.77× 42.5 80.4 64.6 27.2 29.5 58.4 25.1 46.8

GRPO 80 493.5 1.00× 25.0 82.0 64.4 24.3 26.4 59.4 25.0 43.8
↪→ + SPEC-RL ℓ = e0.2 80 226.3 1.82× 32.5 81.8 63.4 29.4 29.9 57.9 24.0 45.6

GRPO 90 554.8 1.00× 42.5 82.6 64.4 26.5 25.5 60.7 24.4 46.7
↪→ + SPEC-RL ℓ = e0.2 90 246.7 1.86× 37.5 83.3 66.4 29.8 29.6 58.5 25.9 47.3

24

Table 19: Intermediate training results of Qwen-3-1.7B-Base on DeepMath-6K with GRPO and SPEC-RL at lenience
ℓ = e0.5. We report rollout efficiency and accuracy every 10 training steps, illustrating the progression of model
performance during training.

Algorithm Step
Rollout Efficiency Math Reasoning OOD

AVG
Tokens (M) Speedup AMC23 GSM8K MATH

500
Minerva

Math
Olympiad

Bench
MMLU
STEM IFEval

Base Model 0 - - 22.5 59.1 45.0 12.5 16.7 39.3 17.9 30.4
GRPO 10 65.8 1.00× 37.5 74.0 54.0 18.8 22.8 43.9 20.3 38.8
↪→ + SPEC-RL ℓ = e0.5 10 43.6 1.41× 27.5 75.7 55.8 21.7 21.8 43.0 22.4 38.3

GRPO 20 127.4 1.00× 27.5 78.2 57.8 25.4 24.7 45.5 20.3 39.9
↪→ + SPEC-RL ℓ = e0.5 20 67.2 1.66× 30.0 80.0 63.0 25.0 24.6 46.9 22.2 41.7

GRPO 30 187.7 1.00× 37.5 80.1 60.4 22.4 25.0 47.9 20.9 42.0
↪→ + SPEC-RL ℓ = e0.5 30 85.1 1.85× 30.0 81.0 64.0 25.4 27.6 51.1 26.2 43.6

GRPO 40 248.3 1.00× 32.5 79.9 65.0 23.5 24.7 50.7 21.3 42.5
↪→ + SPEC-RL ℓ = e0.5 40 102.9 1.96× 37.5 80.7 63.8 26.5 26.1 52.2 23.5 44.3

GRPO 50 309.1 1.00× 35.0 81.2 64.2 25.7 24.6 53.7 25.1 44.2
↪→ + SPEC-RL ℓ = e0.5 50 119.4 2.06× 32.5 81.1 64.4 28.7 28.0 55.6 27.7 45.4

GRPO 60 370.4 1.00× 35.0 81.3 63.6 28.3 26.7 56.0 24.0 45.0
↪→ + SPEC-RL ℓ = e0.5 60 135.1 2.14× 27.5 83.4 66.4 26.5 29.9 54.7 28.8 45.3

GRPO 70 431.9 1.00× 42.5 82.3 61.8 26.5 28.1 55.5 26.2 46.1
↪→ + SPEC-RL ℓ = e0.5 70 153.2 2.18× 40.0 82.5 65.4 26.5 29.9 55.6 27.4 46.8

GRPO 80 493.5 1.00× 25.0 82.0 64.4 24.3 26.4 59.4 25.0 43.8
↪→ + SPEC-RL ℓ = e0.5 80 168.1 2.24× 45.0 83.7 67.0 29.8 29.6 57.1 28.3 48.6

GRPO 90 554.8 1.00× 42.5 82.6 64.4 26.5 25.5 60.7 24.4 46.7
↪→ + SPEC-RL ℓ = e0.5 90 182.7 2.29× 37.5 84.4 68.0 29.4 29.3 58.3 28.8 48.0

Table 20: Intermediate training results of Qwen-3-1.7B-Base on DeepMath-6K with GRPO and SPEC-RL at lenience
ℓ = e0.8. We report rollout efficiency and accuracy every 10 training steps, illustrating the progression of model
performance during training.

Algorithm Step
Rollout Efficiency Math Reasoning OOD

AVG
Tokens (M) Speedup AMC23 GSM8K MATH

500
Minerva

Math
Olympiad

Bench
MMLU
STEM IFEval

Base Model 0 - - 22.5 59.1 45.0 12.5 16.7 39.3 17.9 30.4
GRPO 10 65.8 1.00× 37.5 74.0 54.0 18.8 22.8 43.9 20.3 38.8
↪→ + SPEC-RL ℓ = e0.8 10 41.9 1.46× 30.0 76.6 57.0 19.9 21.6 44.8 20.1 38.6

GRPO 20 127.4 1.00× 27.5 78.2 57.8 25.4 24.7 45.5 20.3 39.9
↪→ + SPEC-RL ℓ = e0.8 20 57.5 1.86× 27.5 80.0 60.0 26.1 24.4 46.2 23.3 41.1

GRPO 30 187.7 1.00× 37.5 80.1 60.4 22.4 25.0 47.9 20.9 42.0
↪→ + SPEC-RL ℓ = e0.8 30 70.1 2.12× 37.5 81.6 62.4 28.7 24.0 51.5 27.4 44.7

GRPO 40 248.3 1.00× 32.5 79.9 65.0 23.5 24.7 50.7 21.3 42.5
↪→ + SPEC-RL ℓ = e0.8 40 81.8 2.29× 37.5 82.0 63.8 26.8 27.7 53.8 28.5 45.7

GRPO 50 309.1 1.00× 35.0 81.2 64.2 25.7 24.6 53.7 25.1 44.2
↪→ + SPEC-RL ℓ = e0.8 50 97.5 2.35× 35.0 81.5 63.4 28.3 26.5 57.0 28.7 45.8

GRPO 60 370.4 1.00× 35.0 81.3 63.6 28.3 26.7 56.0 24.0 45.0
↪→ + SPEC-RL ℓ = e0.8 60 110.8 2.43× 47.5 82.2 61.8 26.8 25.8 57.7 25.5 46.8

GRPO 70 431.9 1.00× 42.5 82.3 61.8 26.5 28.1 55.5 26.2 46.1
↪→ + SPEC-RL ℓ = e0.8 70 120.0 2.54× 35.0 84.2 62.2 26.8 25.9 58.9 27.9 45.8

GRPO 80 493.5 1.00× 25.0 82.0 64.4 24.3 26.4 59.4 25.0 43.8
↪→ + SPEC-RL ℓ = e0.8 80 132.0 2.60× 32.5 84.1 63.6 27.6 26.5 58.4 28.3 45.9

GRPO 90 554.8 1.00× 42.5 82.6 64.4 26.5 25.5 60.7 24.4 46.7
↪→ + SPEC-RL ℓ = e0.8 90 144.8 2.64× 37.5 83.5 63.6 27.2 25.0 61.7 26.2 46.4

25

Table 21: Intermediate training results of Qwen-3-1.7B-Base on DeepMath-6K with GRPO and SPEC-RL at lenience
ℓ = e1.0. We report rollout efficiency and accuracy every 10 training steps, illustrating the progression of model
performance during training.

Algorithm Step
Rollout Efficiency Math Reasoning OOD

AVG
Tokens (M) Speedup AMC23 GSM8K MATH

500
Minerva

Math
Olympiad

Bench
MMLU
STEM IFEval

Base Model 0 - - 22.5 59.1 45.0 12.5 16.7 39.3 17.9 30.4
GRPO 10 65.8 1.00× 37.5 74.0 54.0 18.8 22.8 43.9 20.3 38.8
↪→ + SPEC-RL ℓ = e1.0 10 41.5 1.46× 25.0 75.7 55.0 17.3 23.3 44.2 18.5 37.0

GRPO 20 127.4 1.00× 27.5 78.2 57.8 25.4 24.7 45.5 20.3 39.9
↪→ + SPEC-RL ℓ = e1.0 20 52.6 1.99× 25.0 79.0 60.0 25.0 22.4 46.7 23.1 40.2

GRPO 30 187.7 1.00× 37.5 80.1 60.4 22.4 25.0 47.9 20.9 42.0
↪→ + SPEC-RL ℓ = e1.0 30 64.8 2.23× 42.5 80.8 64.4 25.4 27.4 49.9 30.1 45.8

GRPO 40 248.3 1.00× 32.5 79.9 65.0 23.5 24.7 50.7 21.3 42.5
↪→ + SPEC-RL ℓ = e1.0 40 73.2 2.46× 32.5 81.3 65.0 24.6 27.7 52.1 27.2 44.3

GRPO 50 309.1 1.00× 35.0 81.2 64.2 25.7 24.6 53.7 25.1 44.2
↪→ + SPEC-RL ℓ = e1.0 50 86.6 2.55× 30.0 83.2 62.0 25.0 25.9 53.4 28.7 44.0

GRPO 60 370.4 1.00× 35.0 81.3 63.6 28.3 26.7 56.0 24.0 45.0
↪→ + SPEC-RL ℓ = e1.0 60 97.8 2.64× 32.5 84.1 62.0 28.3 27.1 52.9 28.1 45.0

GRPO 70 431.9 1.00× 42.5 82.3 61.8 26.5 28.1 55.5 26.2 46.1
↪→ + SPEC-RL ℓ = e1.0 70 107.7 2.72× 35.0 83.0 62.8 25.4 27.0 52.1 27.9 44.7

GRPO 80 493.5 1.00× 25.0 82.0 64.4 24.3 26.4 59.4 25.0 43.8
↪→ + SPEC-RL ℓ = e1.0 80 116.6 2.81× 30.0 82.3 63.4 26.1 27.0 54.0 29.0 44.5

GRPO 90 554.8 1.00× 42.5 82.6 64.4 26.5 25.5 60.7 24.4 46.7
↪→ + SPEC-RL ℓ = e1.0 90 123.0 2.91× 37.5 83.9 62.4 25.7 24.9 54.8 28.3 45.4

Table 22: Intermediate training results of Qwen-3-1.7B-Base on DeepMath-6K with GRPO and SPEC-RL at lenience
ℓ = e2.0. We report rollout efficiency and accuracy every 10 training steps, illustrating the progression of model
performance during training.

Algorithm Step
Rollout Efficiency Math Reasoning OOD

AVG
Tokens (M) Speedup AMC23 GSM8K MATH

500
Minerva

Math
Olympiad

Bench
MMLU
STEM IFEval

Base Model 0 - - 22.5 59.1 45.0 12.5 16.7 39.3 17.9 30.4
GRPO 10 65.8 1.00× 37.5 74.0 54.0 18.8 22.8 43.9 20.3 38.8
↪→ + SPEC-RL ℓ = e2.0 10 40.4 1.50× 37.5 75.3 55.4 21.7 21.8 44.0 19.6 39.3

GRPO 20 127.4 1.00× 27.5 78.2 57.8 25.4 24.7 45.5 20.3 39.9
↪→ + SPEC-RL ℓ = e2.0 20 43.9 2.24× 25.0 78.9 60.4 28.3 23.7 44.3 25.0 40.8

GRPO 30 187.7 1.00× 37.5 80.1 60.4 22.4 25.0 47.9 20.9 42.0
↪→ + SPEC-RL ℓ = e2.0 30 51.2 2.59× 30.0 81.1 61.0 26.1 25.6 49.8 29.2 43.3

GRPO 40 248.3 1.00× 32.5 79.9 65.0 23.5 24.7 50.7 21.3 42.5
↪→ + SPEC-RL ℓ = e2.0 40 54.5 2.93× 25.0 80.7 64.0 28.7 26.4 52.5 31.4 44.1

GRPO 50 309.1 1.00× 35.0 81.2 64.2 25.7 24.6 53.7 25.1 44.2
↪→ + SPEC-RL ℓ = e2.0 50 60.1 3.14× 37.5 82.1 61.6 25.7 24.1 52.4 29.2 44.7

GRPO 60 370.4 1.00× 35.0 81.3 63.6 28.3 26.7 56.0 24.0 45.0
↪→ + SPEC-RL ℓ = e2.0 60 67.2 3.24× 32.5 83.5 57.8 25.0 24.3 54.6 31.4 44.2

GRPO 70 431.9 1.00× 42.5 82.3 61.8 26.5 28.1 55.5 26.2 46.1
↪→ + SPEC-RL ℓ = e2.0 70 76.8 3.28× 22.5 82.4 57.4 21.7 23.7 52.5 28.7 41.3

GRPO 80 493.5 1.00× 25.0 82.0 64.4 24.3 26.4 59.4 25.0 43.8
↪→ + SPEC-RL ℓ = e2.0 80 90.5 3.24× 27.5 81.3 57.4 19.5 23.4 54.8 30.3 42.0

GRPO 90 554.8 1.00× 42.5 82.6 64.4 26.5 25.5 60.7 24.4 46.7
↪→ + SPEC-RL ℓ = e2.0 90 114.4 3.05× 30.0 80.4 55.0 21.0 21.9 53.5 29.0 41.5

26

Table 23: Intermediate training results of Qwen-3-1.7B-Base on DeepMath-6K with GRPO and SPEC-RL at lenience
ℓ = ∞. We report rollout efficiency and accuracy every 10 training steps, illustrating the progression of model
performance during training.

Algorithm Step
Rollout Efficiency Math Reasoning OOD

AVG
Tokens (M) Speedup AMC23 GSM8K MATH

500
Minerva

Math
Olympiad

Bench
MMLU
STEM IFEval

Base Model 0 - - 22.5 59.1 45.0 12.5 16.7 39.3 17.9 30.4
GRPO 10 65.8 1.00× 37.5 74.0 54.0 18.8 22.8 43.9 20.3 38.8
↪→ + SPEC-RL ℓ =∞ 10 40.0 1.75× 17.5 71.7 53.8 16.9 21.6 42.5 20.0 34.9

GRPO 20 127.4 1.00× 27.5 78.2 57.8 25.4 24.7 45.5 20.3 39.9
↪→ + SPEC-RL ℓ =∞ 20 40.0 3.39× 35.0 78.0 56.4 21.0 22.7 44.4 21.4 39.8

GRPO 30 187.7 1.00× 37.5 80.1 60.4 22.4 25.0 47.9 20.9 42.0
↪→ + SPEC-RL ℓ =∞ 30 40.0 5.03× 35.0 76.9 53.2 21.7 21.3 43.0 21.4 38.9

GRPO 40 248.3 1.00× 32.5 79.9 65.0 23.5 24.7 50.7 21.3 42.5
↪→ + SPEC-RL ℓ =∞ 40 40.0 6.65× 32.5 76.7 57.0 17.3 22.4 43.3 22.6 38.8

GRPO 50 309.1 1.00× 35.0 81.2 64.2 25.7 24.6 53.7 25.1 44.2
↪→ + SPEC-RL ℓ =∞ 50 40.0 8.29× 37.5 77.4 57.0 23.2 22.5 43.3 22.7 40.5

GRPO 60 370.4 1.00× 35.0 81.3 63.6 28.3 26.7 56.0 24.0 45.0
↪→ + SPEC-RL ℓ =∞ 60 40.0 9.93× 35.0 77.1 58.8 23.5 22.8 42.6 23.7 40.5

GRPO 70 431.9 1.00× 42.5 82.3 61.8 26.5 28.1 55.5 26.2 46.1
↪→ + SPEC-RL ℓ =∞ 70 40.0 11.56× 35.0 77.9 58.6 23.2 22.4 44.0 20.9 40.3

GRPO 80 493.5 1.00× 25.0 82.0 64.4 24.3 26.4 59.4 25.0 43.8
↪→ + SPEC-RL ℓ =∞ 80 40.0 13.21× 32.5 79.0 60.2 23.9 24.3 42.8 23.3 40.9

GRPO 90 554.8 1.00× 42.5 82.6 64.4 26.5 25.5 60.7 24.4 46.7
↪→ + SPEC-RL ℓ =∞ 90 40.0 14.86× 32.5 78.1 60.4 19.9 23.7 44.1 22.0 40.1

27

B CASE STUDY

To provide a more intuitive understanding of how SPEC-RL operates during training, we present several case studies
comparing cached rollouts from previous epochs with newly generated rollouts under the current policy. These ex-
amples highlight how speculative prefixes are verified and reused, and how continuation is triggered once a rejection
occurs. They also illustrate typical scenarios where SPEC-RL improves efficiency by avoiding redundant generation,
while still correcting erroneous reasoning steps when necessary. Representative cases are shown in Figures 12, 13, 14,
and 15.

Prompt

system

You are a helpful assistant.

user

Kim's birthday was 200 days ago. Today is Wednesday. On what day of the week did his birthday fall?

Please reason step by step, and put your final answer within \boxed{}.

assistant

To determine the day of the week Kim's birthday fell on, we can

follow these steps:

1. Identify the current day and the number of days since Kim's

birthday.

- Today is Wednesday.

- Kim's birthday was 200 days ago.

2. Determine the day of the week 200 days ago from Wednesday.

- We need to find the remainder when 200 is divided by 7,

because there are 7 days in a week. This will tell us how many

days forward or backward from Wednesday we need to count.

- Calculate 200 ÷ 7:

200 ÷ 7 = 28 rem𝑎𝑖𝑛𝑑𝑒𝑟 4
This means that 200 days is equivalent to 28 weeks and 4

days. So, 200 days ago from Wednesday is the same as 4 days

before Wednesday.

3. Count backward 4 days from Wednesday.

- Monday is 1 day before Wednesday.

- Sunday is 2 days before Wednesday.

- Saturday is 3 days before Wednesday.

- Friday is 4 days before Wednesday.

Therefore, 200 days ago from Wednesday was a Friday.

The final answer is \boxed{Friday}.

To determine the day of the week Kim's birthday fell on, we can

follow these steps:

1. Identify the current day and the number of days since Kim's

birthday.

- Today is Wednesday.

- Kim's birthday was 200 days ago.

2. Determine the day of the week 200 days ago from Wednesday.

- We need to find the remainder when 200 is divided by 7,

because there are 7 days in a week. This will tell us how many

days forward or backward from Wednesday we need to count.

- Calculate the remainder:

200 ÷ 7 = 28 rem𝑎𝑖𝑛𝑑𝑒𝑟 4
- This means that 200 days ago was 4 days before Wednesday.

3. Count backwards from Wednesday by 4 days.

- Wednesday - 1 day = Tuesday

- Tuesday - 1 day = Monday

- Monday - 1 day = Sunday

- Sunday - 1 day = Saturday

Therefore, Kim's birthday fell on a \boxed{\text{Saturday}.

1.7B, cur step: 96, pre step: 90

Old Rollout from Epoch 𝒕 − 𝟏 New Rollout from Epoch 𝒕

Figure 12: Case study comparing rollouts from previous and current training steps. The prompt denotes the model
input. The old rollout and new rollout are generated by the respective model from corresponding epochs. Tokens
highlighted in yellow indicate the verified speculative prefix. The red box marks incorrect reasoning steps, whereas
the green box highlights correct reasoning steps.

28

Prompt

system

You are a helpful assistant.

user

The arithmetic mean of these five expressions is 24. What is the value of 𝑥?

𝑥 + 8 15 2𝑥 13 2𝑥 + 4
Please reason step by step, and put your final answer within \boxed{}.

assistant

To find the value of 𝑥, we start by understanding the

arithmetic mean of the given expressions and setting it equal

to 24. The expressions are:

1. 𝑥 + 8
2. 15
3. 2𝑥
4. 13
5. 2𝑥 + 4

The arithmetic mean of these expressions is given by:
(x + 8) + 15 + 2x + 13 + (2x + 4)

5
= 24

First, we simplify and sum the expressions in the numerator:
(x + 8) + 15 + 2x + 13 + (2x + 4)

5

=
x + 8 + 15 + 2x + 13 + 2x + 4

5

=
5x + 30

5

Setting this equal to 24, we get:
5x + 30

5
= 24

Next, we eliminate the fraction by multiplying both sides of

the equation by 5:

5𝑥 + 30 = 120

Then, we isolate 𝑥 by subtracting 30 from both sides:

5𝑥 = 90

Finally, we solve for 𝑥 by dividing both sides by 5:

𝑥 =
90

5
= 18

So, the value of 𝑥 is \boxed{18}.

To find the value of 𝑥, we start by understanding the

arithmetic mean of the given expressions and setting it equal

to 24. The expressions are:

1. 𝑥 + 8
2. 15
3. 2𝑥
4. 13
5. 2𝑥 + 4

The arithmetic mean of these expressions is given by:
(x + 8) + 15 + 2x + 13 + (2x + 4)

5
= 24

First, we simplify the numerator:

(x + 8) + 15 + 2x + 13 + (2x + 4)

= x + 8 + 15 + 2x + 13 + 2x + 4

= 5x + 40

So the equation becomes:
5x + 40

5
= 24

Next, we eliminate the denominator by multiplying both sides

of the equation by 5:

5𝑥 + 40 = 120

Then, we solve for 𝑥 by isolating it on one side of the

equation. First, subtract 40 from both sides:

5𝑥 = 80

Finally, divide both sides by 5:

𝑥 = 16

Thus, the value of 𝑥 is \boxed{16}.

1.7B, cur step: 18, pre step: 12

Old Rollout from Epoch 𝒕 − 𝟏 New Rollout from Epoch 𝒕

Figure 13: Case study comparing rollouts from previous and current training steps. The prompt denotes the model
input. The old rollout and new rollout are generated by the respective model from corresponding epochs. Tokens
highlighted in yellow indicate the verified prefix. The red box marks incorrect reasoning steps, whereas the green box
highlights correct reasoning steps.

29

To find the units digit of 987
, we need to observe the pattern in

the units digit of powers of 9.

Let's start by computing the first few powers of 9 and noting

their units digits:

91 = 9 (𝑢𝑛𝑖𝑡𝑠 𝑑𝑖𝑔𝑖𝑡 𝑖𝑠 9)
92 = 81 (𝑢𝑛𝑖𝑡𝑠 𝑑𝑖𝑔𝑖𝑡 𝑖𝑠 1)

93 = 729 (𝑢𝑛𝑖𝑡𝑠 𝑑𝑖𝑔𝑖𝑡 𝑖𝑠 9)
94 = 6561 (𝑢𝑛𝑖𝑡𝑠 𝑑𝑖𝑔𝑖𝑡 𝑖𝑠 1)

From the above calculations, we see that the units digits

repeat every 2 powers: 9, 1, 9, 1, ...

So, the units digit of 9n is 9 if n is odd, and 1 if n is even.

Now, we need to determine if 87 is odd or even.

Since 87 is an odd power of 8, it will be odd as well (because

any positive power of an even number is even).

Therefore, the units digit of 987
will be the same as the units

digit of 91, which is 9.

Thus, the units digit of 987
is \boxed{9}.

To find the units digit of 987
, we need to observe the pattern in

the units digit of powers of 9.

Let's start by computing the first few powers of 9 and noting

their units digits:

91 = 9 (𝑢𝑛𝑖𝑡𝑠 𝑑𝑖𝑔𝑖𝑡 𝑖𝑠 9)
92 = 81 (𝑢𝑛𝑖𝑡𝑠 𝑑𝑖𝑔𝑖𝑡 𝑖𝑠 1)

93 = 729 (𝑢𝑛𝑖𝑡𝑠 𝑑𝑖𝑔𝑖𝑡 𝑖𝑠 9)
94 = 6561 (𝑢𝑛𝑖𝑡𝑠 𝑑𝑖𝑔𝑖𝑡 𝑖𝑠 1)

From the above, we can see that the units digits repeat every 2

powers: 9, 1, 9, 1, ...

So, the units digit of 9n is 9 if n is odd, and 1 if n is even.

Next, we need to determine if 87 is odd or even. Since 8 is

even, any power of 8 will also be even. Therefore, 87 is an

even number.

Since 87 is even, the units digit of 987
will be 1.

Thus, the units digit of 987
is \boxed{1}.

1.7B, cur step: 30, pre step: 24

Prompt

system

You are a helpful assistant.

user

Find the units digit of 987
.

Please reason step by step, and put your final answer within \boxed{}.

assistant

Old Rollout from Epoch 𝒕 − 𝟏 New Rollout from Epoch 𝒕

Figure 14: Case study comparing rollouts from previous and current training steps. The prompt denotes the model
input. The old rollout and new rollout are generated by the respective model from corresponding epochs. Tokens
highlighted in yellow indicate the verified speculative prefix. The red box marks incorrect reasoning steps, whereas
the green box highlights correct reasoning steps.

30

To solve the given inequality −3 ≤ x + 5 ≤ 8, we need to

isolate x on one side of the inequality. We can do this by

subtracting 5 from all parts of the inequality:

−3 − 5 ≤ x + 5 − 5 ≤ 8 − 5

Simplifying each part:

−8 ≤ x ≤ 3

Since x is an integer, the possible values for x are:

{−8, −7, −6, −5, −4, −3, −2, −1, 0, 1, 2, 3}

Next, we sum these possible values:

−8 + −7 + −6 + −5 + −4 + −3 + −2 + −1
+ 0 + 1 + 2 + 3

We can group the positive and negative terms:

(−8 + 3) + (−7 + 2) + (−6 + 1) + (−5 + 4) − 10
= −5 − 5 − 5 − 10 = −25

Thus, the sum of all the possible solutions is:

\boxed{-25}.

To solve the given inequality −3 ≤ x + 5 ≤ 8, we need to

isolate x on one side of the inequality. We can do this by

subtracting 5 from all parts of the inequality:

−3 − 5 ≤ x + 5 − 5 ≤ 8 − 5

Simplifying each part:

−8 ≤ x ≤ 3

Since x is an integer, the possible values for x are:

{−8, −7, −6, −5, −4, −3, −2, −1, 0, 1, 2, 3}

Next, we need to find the sum of all these possible values of x.

We can sum them directly:

−8 + −7 + −6 + −5 + −4 + −3 + −2 + −1
+ 0 + 1 + 2 + 3

We can simplify this by grouping the terms to make the

addition easier:

(−8 + 3) + (−7 + 2) + (−6 + 1) + (−5 + 0)
+ (−4 + (−2)) + (−3 + (−1))
= −5 + (−5) + (−5) + (−5) + (−6) + (−4) = −30

Thus, the sum of all the possible solutions is:

\boxed{-30}.

1.7B, cur step: 30, pre step: 24

Prompt

system

You are a helpful assistant.

user

If −3 ≤ x + 5 ≤ 8 and x is an integer, what is the sum of all the possible solutions?

Please reason step by step, and put your final answer within \boxed{}.

assistant

Old Rollout from Epoch 𝒕 − 𝟏 New Rollout from Epoch 𝒊

Figure 15: Case study comparing rollouts from previous and current training steps. The prompt denotes the model
input. The old rollout and new rollout are generated by the respective model from corresponding epochs. Tokens
highlighted in yellow indicate the verified speculative prefix. The red box marks incorrect reasoning steps, whereas
the green box highlights correct reasoning steps.

31

	Introduction
	Preliminaries
	On-Policy Reinforcement Learning
	Speculative Decoding

	Method
	Speculative Decoding over Cached Rollouts with Lenience
	Implementing SPEC-RL in RLVR Training
	Discussion

	Experiments
	Experiment Setup
	Main Performance
	Ablation Study

	Related Work
	Conclusion
	More Details of SPEC-RL
	Hyperparameters
	Detailed Evaluation Setups
	Performance over Training Steps
	End-to-End Time Breakdown
	Generality Across Datasets
	Impact of Training Set Size on Acceleration
	Random Reuse Results
	Full Lenience Ablation Results

	Case Study

